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1. Introduction

This note describes how to implement Fader and Hardie’s (2001) stochastic
model of buyer behavior within a standard spreadsheet environment.

There are two key stages associated with the implementation of this
model: (i) estimating the model parameters, and (ii) generating the sales
forecast given these parameter estimates. The specific steps are outlined in
sections 3 and 4 below. Section 2 provides the reader with a simple introduc-
tion to the process of estimating the parameters of a basic probability model
within a spreadsheet environment. These three sections should be read in
conjunction with the Excel spreadsheet cdnow.xls.

Let us first present some caveats for the reader who is interested in us-
ing this model in any given market setting. One should not blindly cut and
paste a new dataset into this spreadsheet. It is important that the assump-
tions underlying the model are carefully examined, and thought be given
as to whether they are appropriate for the dataset at hand. The two key
assumptions are:

• The data being modeled are counts of relatively homogeneous units
(e.g., CDs). This model must not be used to model dollar sales or
counts of products that are not very similar (e.g., the number of prod-
ucts purchased at Amazon.com where the units include such disparate
items as books, electronic equipment, lawn furniture, and so on).

• Use of the shifted-geometric/geometric distributions implies that the
modal trial quantity is 1 unit and that the modal number of units
purchased in subsequent weeks, conditional on being a “possible repeat
buyer”, is 0. If this is not that case, it will be necessary to change the
underlying model structure. For example, the shifted beta-geometric
model of trial counts could be replaced by the truncated or shifted NBD

1 c© 2001 Peter S. Fader and Bruce G. S. Hardie. This note, along with the associated
Excel spreadsheet, can be found at <http://brucehardie.com/pmnotes.html>.
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(which can have a mode away from 1). Similarly, the beta-geometric
repeat purchasing distribution could be replaced by the NBD (which
can have a non-zero mode).

A number of other assumptions made, implicitly or explicitly, in the paper
should also be acknowledged and taken into account (e.g., the independence
of quantity decisions across transactions).

We strongly encourage interested readers to build the spreadsheet that
implements the model for themselves “from scratch”, using this note and the
Excel spreadsheet cdnow.xls as a guide.

2. The Week 1 Trial Model

As a refresher (or primer) on estimating the parameters of a basic probability
model using Excel, let us consider fitting the trial submodel to the week 1
data. As noted in Appendix A of the paper, the column of data in Table 1
corresponding to week 1 presents trial-week-only purchases by a group of
1574 customers. Our goal is to fit the shifted beta-geometric model, as given
in equation (2) of the paper (p. S98), to these data.

The shifted beta-geometric model has two parameters, αT and βT . Max-
imum likelihood estimates of these two model parameters are found by max-
imizing the following log-likelihood function:

LL =
9∑

x=1

n1x ln
[
P (T1 = x)

]
+

(
1574 −

9∑
x=1

n1x

)
ln

[
1 −

9∑
x=1

P (T1 = x)
]

where n1x is the number of people making x purchases in week 1. We con-
struct this log-likelihood function in an Excel worksheet in the following
manner.

Consider the worksheet Week 1 Trial (A). Cells A5:B14 contain the rel-
evant purchasing data from Table 1. The first thing we need to do is create
expressions for the shifted beta-geometric probabilities of making x purchases
(x = 1, 2, . . . , 9, 10+), given αT and βT . These shifted beta-geometric proba-
bilities can be computed by recursion using the expressions given in equation
(7) (p. S100). In order to create the corresponding formulas in the spread-
sheet without an error message appearing (e.g., #NUM! or #DIV/0!), we need
some so-called starting values for αT and βT . Provided they are within the
defined bounds (αT , βT > 0), the exact values do not matter. We start with
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1.0 for both parameters and locate these values in cells B1:B2. The formu-
las in cells C5:C13 are a straightforward implementation of the expressions
given in equation (7). The probability of making 10+ purchases in a trial
week (cell C14) is simply 1 − ∑9

x=1 P (T1 = x).
Now that we have the shifted beta-geometric probabilities, creating the

log-likelihood function is simple. The individual elements of the above log-
likelihood function are contained in cells D5:D14. The total is found in cell
D2; this is the value of the log-likelihood function, given the values for the
two model parameters in cells B1:B2.

Given these sample data, we find the maximum likelihood estimates of
the shifted beta-geometric distribution by maximizing the log-likelihood func-
tion. We do this using the Excel add-in Solver. (Background information
on Solver can be found in Lilien and Rangaswamy (1998) or Winston and
Albright (1997).) The target cell is the value of the log-likelihood function
(cell D2); we wish to maximize this by changing cells B1:B2. The constraints
we place on the parameters are that both αT and βT are greater than 0.
As Solver only offers us a “greater than or equal to” constraint, we add the
constraint that cells B1:B2 are ≥ a small positive number (e.g., 0.00001).
Clicking the Solve button, Solver finds the values of αT and βT that maxi-
mize the log-likelihood function; these are the maximum likelihood estimates
of the model parameters.

The results of this optimization process are found in the worksheet Week
1 Trial (B). In this worksheet, we also evaluate the fit of the model using
the standard chi-squared goodness of fit test. We first have to compute the
expected number of people buying 1, 2, . . . , 9, 10+ units in their trial week.
We have E(n1x) = 1574 × P (T1 = x); these calculations are implemented in
cells F5:F14. The chi-squared goodness of fit test statistic is computed as

χ2 =
10+∑
x=1

[
n1x − E(n1x)

]2

E(n1x)

Each element of this calculation is presented in cells G5:G14, with the total
given in cell G15. The critical value can be computed using the chiinv
command. As the value of the sample test statistic is less than the critical
value (cell G17), we conclude that the shifted beta-geometric distribution
adequately fits the data.
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3. Calibrating the Full Model

We now turn our attention to the task of estimating the parameters of the
full model presented in the body of the paper. Our goal is to construct the
log-likelihood function — as given in equation (6) (p. S100) — in an Excel
worksheet. At the heart of this log-likelihood function is P (Xw = x), the
probability that an eligible customer purchases x units in week w, as given
in equation (1) (p. S98). As the sample data are in the form of a table
documenting the number of people purchasing 0, 1, . . . , 9, 10+ units (CDs)
for each of the 12 weeks, we need to create a table that gives us P (Xw =
x), x = 0, 1, . . . , 9, 10+ and w = 1, 2, . . . 12, given values of the six model
parameters (αT , βT , αR, βR, γ, δ).

From equation (1), we see that P (Xw = x) is simply a weighted average
of the week-of-trial-specific probabilities of purchasing x units in week w. As
an intermediate step, we build twelve tables that give us the probability of
purchasing x units in week w, one for each trial week. These will then be
aggregated and the log-likelihood created. The exact steps are as follows —
see the worksheet Full Model (A).

Let us start with the week 1 triers. Our goal is to build a table that
gives us the probability that any such person purchases x units in their trial
week and in any of the subsequent eleven “repeat” weeks. We will create this
table of probabilities in cells C63:N73. In order to create the corresponding
formulas in the spreadsheet without any error messages appearing, we need
some so-called starting values for the six model parameters. The exact values
do not matter — provided they are within the defined bounds — so we start
with 1.0 for αT , βT , αR and βR, and 0.2 and 0.1 for γ and δ respectively. We
locate these parameter values in cells B1:B6.

We compute the shifted beta-geometric probabilities of making x pur-
chases in the trial week, given αT and βT , by recursion using the expressions
given in equation (7); the formulas found in cells C64:C73 mirror those found
in cells C5:C14 of the worksheet Week 1 Trial (A).

Next we need to create the expressions for the time-dependent, zero-
inflated beta-geometric distribution probabilities that a week 1 trier makes a
repeat purchase of x units in week w, i.e., P (Rw|1 = x), x = 0, 1, . . . , 9, 10+,
w = 2, 3, . . . 12. Rather than directly use the recursive relationship given in
equation (8) (p. S100), we take the following approach. We first compute the
probability that a week 1 trier is a “possible repeat buyer” in weeks 2–12;
following repeat model assumption (1) — see p. S99 — this is computed as
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γ(w − 1)δ. Cells D49:N49 contain this formula, conditional on the parameter
values in cells B5:B6.

Next we need to create the expressions for the beta-geometric probabilities
of making x purchases (x = 0, 1, . . . , 9, 10+), given αR and βR, for someone
who is a “possible repeat buyer”. The beta-geometric probabilities can be
computed using the following recursive relationship:

P (R = x | possible repeat buyer) =




αR

αR + βR

x = 0

βR + x − 1
αR + βR + x

P (R = x − 1) x ≥ 1

The formulas in cells D51:D60 are a straight-forward implementation of this
expression. The probability of a “possible repeat buyer” making 10+ pur-
chases (cell D61) is simply 1 − ∑9

x=0 P (R = x).
It follows that the probability of a week 1 trier making a repeat purchase

of x units in week w is given by P (Rw|1) = P (R = x | possible repeat buyer)
× P (week 1 trier is a possible repeat buyer in week w). Cells D63:N73 contain
this calculation for x = 0, 1, . . . , 9, 10+ and w = 2, 3, . . . 12.

The corresponding purchase probabilities for a week 2 trier are simply the
week 1 trier numbers lagged by one week; these are given in cells D75:N85.
The purchase probabilities for a week 3 trier are simply the week 2 trier
numbers lagged by one week (cells E87:N97), and so on.

All that we need to do in order to create the table of P (Xw = x) is
to take a weighted average of these twelve sets of probability tables. This
calculation is performed in cells C37:N47; the corresponding formulas are
simply the implementation of equation (1).

Now that we have this table of probabilities, creating the log-likelihood
function is straightforward. The individual elements of the log-likelihood
function, equation (6), are contained in cells C25:N35. The total is given in
cell E1; this is the value of the log-likelihood function, given the values for
the six model parameters in cells B1:B6.

Given the sample data (i.e., cells C10:N20), we find the maximum like-
lihood estimates of the model parameters by maximizing the log-likelihood
function. We do this using Solver. The target cell is the value of the log-
likelihood (cell E1); we wish to maximize this by changing cells B1:B6. The
constraints we place on the parameters are that αT , βT , αR, βR and γ are
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greater than 0. As Solver only offers us a “greater than or equal to” con-
straint, we add the constraint that cells B1:B5 are ≥ a small positive number
(e.g., 0.00001). Clicking the Solve button, Solver finds the values of the six
model parameters that maximize the log-likelihood function. But can we
be sure that we have reached the maximum of the log-likelihood function?
Using the solution given by Solver as the set of starting values for the pa-
rameters, we “fire up” Solver again to see if it can improve on this solution.
Once we are satisfied that the maximum has been reached, we can say that
the numbers given in cells B1:B6 are the maximum likelihood estimates of
the model parameters.

So as to be sure that these are indeed the maximum likelihood estimates
of the model parameters, it is good practice to redo the optimization process
using a completely different set of starting values. For example, using starting
values of {0.01, 0.01, 0.01, 0.01, 0.01, 0} for cells B1:B6, repeatedly use Solver
until you are satisfied that the maximum of the log-likelihood function has
been reached. Are the corresponding values of the six model parameters
equal to those given in the paper? (They should be!)

The results of this optimization process are found in the worksheet Full
Model (B). In this worksheet, we also evaluate the fit of the model using
the standard chi-squared goodness of fit test. We first have to compute the
expected number of people buying 0, 1, . . . , 9, 10+ units in each week (w =
1, 2, . . . , 12). We have E(nwx) = P (Xw = x)× the number of eligible cohort
members in week w (i.e.,

∑w
i=1 ni). These calculations are implemented in

cells Q10:AB20. The chi-squared goodness of fit test statistic is computed as

χ2 =
10+∑
x=1

[
n1x − E(n1x)

]2

E(n1x)
+

12∑
w=2

10+∑
x=0

[
nwx − E(nwx)

]2

E(nwx)

Each element of this calculation is presented in cells Q22:AB32, with the total
given in cell AB34. The critical value can be computed using the chiinv
command. As the value of the sample test statistic is less than the critical
value (cell AB35), we conclude that the model adequately fits the data.

4. Creating the Sales Forecast

Now that we have estimates of the six model parameters, creating the sales
forecast is a simple exercise. The expression for the expected total number of
units sold in any given week is given in equation (9) (p. S101). At the heart
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this are expressions for the expected number of units purchased in the trial
week and the expected number of units purchased w−i weeks after trial. This
is implemented in the worksheet Sales Forecast in the following manner.

We first consider the case of the week 1 triers. Cells C11:C62 contain
the expected number of units purchased in weeks 1–52 by any given week 1
trier. Cell C11 is the expected number of units purchased in the trial week,
using the formula given in equation (3) (p. S98). Expected repeat sales in
subsequent weeks are given in the remaining cells, which contain the formula
for E(Rw|i) (w = 2, 3, . . . , 52; i = 1) as given in equation (5) (p. S100).

The corresponding numbers for a week 2 trier are simply the week 1 trier
numbers lagged by one week; they are given in cells D12:D62. The expected
unit sales for a week 3 trier are simply the week 2 trier numbers lagged by
one week, and so on. Given these sets of mean weekly unit purchases for
any week i trier (i = 1, 2, . . . 12), the expected total number of units sold in
weeks 1–52, as computed using equation (9), are given in cells P11:P62. And
that’s it!
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