
Implementing the BG/NBD Model for
Customer Base Analysis in Excel

Peter S. Fader
www.petefader.com

Bruce G. S. Hardie
www.brucehardie.com

Ka Lok Lee†

www.kaloklee.com

June 2005

1. Introduction

This note describes how to implement the BG/NBD model for customer
base analysis1 using Microsoft Excel. There are three key stages to the
implementation of this model:

1. estimating the model parameters,

2. generating the aggregate sales forecast given these parameter esti-
mates, and

3. predicting a particular customer’s future purchasing, given information
about his past behavior and the parameter estimates.

The specific steps are outlined in sections 3–5 below. Section 2 briefly de-
scribes the nature of the data used for model calibration. All these sections
should be read in conjunction with the Excel workbook bgnbd.xls. (We
strongly encourage interested readers to build the spreadsheet that imple-
ments the model “from scratch” for themselves, using this note and the
Excel workbook bgnbd.xls as a guide.)

† c© 2004, 2005 Peter S. Fader, Bruce G. S. Hardie, and Ka Lok Lee. This note and the
associated Excel workbook can be found at <http://brucehardie.com/notes/004/>.
This research was supported in part by ESRC grant R000223742 (awarded to Bruce G. S.
Hardie).

1Fader, Peter S., Bruce G. S. Hardie, and Ka Lok Lee (2005), “"Counting Your Cus-
tomers" the Easy Way: An Alternative to the Pareto/NBD Model,” Marketing Science,
24 (Spring), 275–284.
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2. Data

The model requires three pieces of information about each customer’s past
purchasing history: his “recency” (when his last transaction occurred), “fre-
quency” (how many transactions he made in a specified time period), and
the length of time over which we have observed his purchasing behavior.
The notation used to represent this information is (X = x, tx, T ), where
x is the number of transactions observed in the time period (0, T ] and tx
(0 < tx ≤ T ) is the time of the last transaction.

The worksheet Raw Data contains these data for a sample of 2357 CD-
NOW customers who made their first purchase at the web site during the
first quarter of 1997. We have information on their repeat purchasing be-
havior up to the end of week 39 of 1997.

While the basic unit of time is one week, we recognize that transactions
can occur on each day of the week. Therefore consider customer 0001 (row
2). The number of days (in weeks) during which repeat transactions could
have occurred is T = 38.86, which implies this customer made his first-ever
purchase at CDNOW on the first day of the first week of 1997. Over this time
period, this customer made x = 2 repeat purchases, with the second repeat
purchase occurring on the third day of the 30th week of 1997 (tx = 30.43).
Scrolling down the worksheet, we notice that most customers (1411 in total)
had not made a repeat purchase (x = 0) by the end of week 39.

3. Calibrating the BG/NBD Model

We start by making a copy of the Raw Data worksheet — let’s call it BGNBD
Estimation— and inserting six rows at the top of the worksheet. Our goal
is to construct the log-likelihood function — as given in equations (6) and
(7) of the paper — and find the values of the model parameters associated
with its maximum value.

First we need to enter the expression for ln
[
L(r, α, a, b |X = x, tx, T )

]
for each of the 2357 customers in the sample. In order to create the corre-
sponding expression in the worksheet without an error message appearing
(e.g., #NUM! or #DIV/0!), we need some “starting values” for the four model
parameters. The exact values do not matter — provided they are within the
defined bounds — so we start with 1.0 for r, α, a, and b. We locate these
parameter values in cells B1:B4.

As noted on p. 280 of the paper, the likelihood function for a randomly-
chosen individual with purchase history (X = x, tx, T ) can be written as

L(r, α, a, b |X = x, tx, T ) = A1 · A2 · (A3 + δx>0 A4)
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where

A1 =
Γ(r + x)αr

Γ(r)
A2 =

Γ(a + b)Γ(b + x)
Γ(b)Γ(a + b + x)

A3 =
( 1

α + T

)r+x
A4 =

( a

b + x − 1

)( 1
α + tx

)r+x

and δx>0 = 1 if x > 0, 0 otherwise. This is easy to “code up” in Excel:

• The log of A1 is simply ln
[
Γ(r +x)

]− ln
[
Γ(r)

]
+ r ln(α). The formula

in cell F8 is the expression of this for the first customer:

=GAMMALN(B$1+B8)-GAMMALN(B$1)+B$1*LN(B$2)

• The log of A2 is ln
[
Γ(a+b)

]
+ln

[
Γ(b+x)

]−ln
[
Γ(b)

]−ln
[
Γ(a+b+x)

]
,

which is entered in cell G8 for the first customer as

=GAMMALN(B$3+B$4)+GAMMALN(B$4+B8)-GAMMALN(B$4)
-GAMMALN(B$3+B$4+B8)

• The log of A3 is −(r + x) × ln(α + T ), which is entered in cell H8 for
the first customer as

=-(B$1+B8)*LN(B$2+D8)

• The log of A4 is ln(a) − ln(b + x − 1) − (r + x) × ln(α + tx). We should
only compute this if x > 0; should x = 0 and b be < 1, we would
end up taking the log of a negative number. We therefore enter this
expression in cell I8 for the first customer as

=IF(B8>0,LN(B$3)-LN(B$4+B8-1)-(B$1+B8)*LN(B$2+C8),0)

• Finally, a single customer’s contribution to the sample log-likelihood
function is

ln
[
L(r, α,a, b |X = x, tx, T )

]
= ln(A1) + ln(A2) + ln(A3 + δx>0 A4)
= ln(A1) + ln(A2) + ln

(
exp(ln(A3)) + δx>0 exp(ln(A4))

)
,

which is entered in cell E8 for the first customer as

=F8+G8+LN(EXP(H8)+(B8>0)*EXP(I8))

We copy this block of five cells (E8:I8) down to row 2364.
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The sum of cells E8:E2364 is found in cell B5; this is the value of the
log-likelihood function — equation (7) of the paper — as evaluated at the
specific values of the four model parameters in cells B1:B4. (With starting
values of 1.0 for all four parameters, LL = −13887.7.)

Given these sample data, we find the maximum likelihood estimates of
the four model parameters by maximizing the log-likelihood function. We do
this using the Excel add-in Solver, available under the “Tools” menu. The
target cell is the value of the log-likelihood (cell B5); we wish to maximize
this by changing cells B1:B4. The constraints we place on the parameters
are that r, α, a, and b are greater than 0. As Solver only offers us a “greater
than or equal to” constraint, we add the constraint that cells B1:B4 are ≥
a small positive number (e.g., 0.00001). (See Figure 1.) Clicking the Solve
button, Solver finds the values of the four model parameters that maximize
the log-likelihood function.

Figure 1: Solver Settings

But can we be sure that we have reached the maximum of the log-
likelihood function? Using the solution given by Solver as the set of starting
values for the parameters, we “fire up” Solver again to see if it can improve
on this solution. Once we are satisfied that the maximum has indeed been
reached, we can say that the numbers given in cells B1:B4 are the maximum
likelihood estimates of the model parameters. As reported in Table 2 of
the paper, the maximum value of the log-likelihood function is −9582.4,
associated with r = 0.243, α = 4.414, a = 0.793, and b = 2.426.

So as to be sure that these are indeed the maximum likelihood estimates
of the model parameters, it is good practice to redo the optimization process
using a completely different set of starting values. For example, using start-
ing values of {0.01, 0.01, 0.01, 0.01} for cells B1:B4, repeatedly use Solver
until you are satisfied that the maximum of the log-likelihood function has
been reached. Are the corresponding values of the four model parameters
equal to those given above? (They should be!)
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4. Creating the Sales Forecast

Now that we have estimates of the four model parameters, we can turn our
attention to the task of creating a forecast of repeat purchasing by the cohort
of 2357 customers.

For a randomly-chosen individual, the formula for computing the ex-
pected number of transactions in a time period of length t is

E(X(t) | r, α, a, b)

=
a + b − 1

a − 1

[
1 −

(
α

α + t

)r

2F1
(
r, b; a + b − 1; t

α+t

)]
, (1)

where 2F1(·) is the Gaussian hypergeometric function. In the worksheet
E{X(t)}, we compute this quantity for each day up to the end of week 78
(our forecast horizon); thus t = 1/7, 2/7, . . . , 78 (cells A7:A552).

Central to equation (1) is the Gaussian hypergeometric function, which
is the power series of the form

2F1(a, b; c; z) =
∞∑

j=0

(a)j(b)j

(c)j

zj

j!
, c 
= 0,−1,−2, . . . ,

where (a)j is Pochhammer’s symbol, which denotes the ascending factorial
a(a + 1) · · · (a + j − 1). (Note that an ascending factorial can be represented
as the ratio of two gamma functions, (a)j = Γ(a + j)/Γ(a).) The series
converges for |z| < 1 and is divergent for |z| > 1; if |z| = 1, the series
converges for c − a − b > 0.

Writing

2F1(a, b; c; z) =
∞∑

j=0

uj , where uj =
(a)j(b)j

(c)j

zj

j!

we have the following recursive expression for each term of the series:

uj

uj−1
=

(a + j − 1)(b + j − 1)
(c + j − 1)j

z , j = 1, 2, 3, . . .

where u0 = 1.
This lends itself to a simple (and relatively robust) numerical method

for the evaluation of the Gaussian hypergeometric function: continue adding
terms to the series until uj is less than “machine epsilon” (the smallest num-
ber that a specific computer recognizes as being bigger than zero). How-
ever, when “hard-coding” this in a worksheet (as opposed to, say, creating
a custom function using VBA), it is easier to compute the series to a fixed
number of terms; in this case, we will evaluate the first 151 terms (i.e.,
j = 0, 1, . . . , 150).
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Let us consider the first time point, t = 1/7 (row 7). Looking at equation
(1), the ‘z’ argument of the Gaussian hypergeometric function is t/(α + t);
this is given in cell D7. Starting at cell E7, we compute each term of the series
for j = 0, . . . , 150. (The values of the index j are given in cells E6:EY6.) As
noted above, the value of u0 is 1 (cell E7). To compute the value of u1, we
multiply u0 by

(a + j − 1)(b + j − 1)
(c + j − 1)j

z

where, looking at equation (1), ‘a’ is the BG/NBD model parameter r, ‘b’ is
the BG/NBD model parameter b, ‘c’ equals the BG/NBD model parameters
a + b − 1, the value of ‘z’ is given in cell D7, and j = 1. The Excel formula
used to compute u1 is therefore

=E7*$D7*($B$1+F$6-1)*($B$4+F$6-1)/(($B$3+$B$4-1+F$6-1)*F$6)

We copy this formula across to cell EY7, which corresponds to j = 150.
Summing these terms gives us the numerical value of the Gaussian hyper-
geometric function for this set of function parameters (cell C7).2

The computation of E[X(t))] follows naturally in cell B7; the Excel for-
mula associated with equation (1) is simply

=(B$3+B$4-1)/(B$3-1)*(1-(B$2/(B$2+A7))ˆB$1*C7)

Having created values of t up to 78 in day increments (cells A8:A552), we
copy the block of cells (B7:EY7) down to row 552. We have now computed
the value of E[X(t)] day-by-day to the end of our 78-week forecast horizon
(cells B7:B552).

However, we are not interested in the expected number of repeat transac-
tions for a randomly-chosen individual; rather we are interested in tracking
(and forecasting) the total number of repeat transactions by the cohort of
customers. In computing this cohort-level number, we need to control for
the fact that different customers made their first purchase at CDNOW at
different points in time during the first quarter of 1997, and consequently
differ in the length of the time period during which they could have made re-
peat purchases. Given our recognition that transactions can occur on each
day of the week, we need to consider 7 × 12 = 84 different first-purchase
dates.

Total repeat transactions can be computed as follows:

Total Repeat Transactions by t =
84∑

s=1

δ(t> s
7 )nsE[X(t − s

7)] (2)

2In terminating the series at j = 150, have we evaluated too many or too few terms?
Looking at the matrix of uj terms in the worksheet E{X(t)}, we see that the speed with
which uj → 0 depends on the magnitude of z. In this particular case, there is no point in
going beyond j = 40 for z < 0.5. However we should probably be evaluating more terms
for z = 0.94, since u150 = 1.39E−06 is still some distance from “machine epsilon”.
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where ns is the number of customers who made their first purchase at CD-
NOW on day s of 1997 (and therefore have t − s

7 weeks within which to
make repeat purchases) and δ(t> s

7 ) = 1 if t > s
7 , 0 otherwise.

We determine the values of ns in the worksheet n s. Given T , the number
of days (in weeks) during which repeat transactions could have occurred in
the 39-week calibration period (column B), it follows that the time of the
first purchase is simply 39−T (column C). Performing a pivot table analysis
yields the number of customers who made their first purchase on each of the
84 days of the first quarter that defines this cohort of customers.

Equation (2) is evaluated for t = 1/7, 2/7, . . . , 78 via the block of cells
E1:CM549 in the worksheet Cum Rpt Sls. Cells B4:B81 report the cumu-
lative number of repeat transactions for each of the 78 weeks (using the
=OFFSET() function to “pick out” the relevant numbers from column F. The
expected number of weekly repeat transactions are reported in cells C4:C81.

Some readers may be questioning the numerical precision of these fore-
casts, given our relatively crude method for evaluating the Gaussian hyper-
geometric function. These same forecasts were computed in MATLAB using
a more refined implementation of the numerical method outlined above to
evaluate the Gaussian hypergeometric function — one in which the series ter-
minates when the next term (uj) is less than machine epsilon, instead of at
a fixed point (j = 150 in our spreadsheet implementation). The maximum
percentage difference between the two sets of cumulative repeat transaction
numbers (across the 78 weeks) is 0.01% and by the end of the week 78, the
forecasts differ by 0.40 of a transaction. We feel that these deviations are
tolerable.

5. Computing Conditional Expectations

Finally, we turn our attention to the task of predicting a particular cus-
tomer’s future purchasing, given information about his past behavior and
the parameter estimates. The expression used to compute this quantity is

E(Y (t) |X = x, tx, T, r, α, a, b) =
a + b + x − 1

a − 1

×

[
1 −

(
α + T

α + T + t

)r+x

2F1
(
r + x, b + x; a + b + x − 1; t

α+T+t

)]

1 + δx>0
a

b + x − 1

(
α + T

α + tx

)r+x , (3)

which we implement in the worksheet Conditional Expectation.
We start by placing our estimates of the four model parameters in cells

B1:B4. We then place in cells B6:B9 the purchase history (X = x, tx, T )
for the particular customer whose future purchasing we wish to predict, and
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specify t, the length of the period over which we wish to make the conditional
forecast (cell B9).

Let us perform this calculation for the first customer in our dataset (ID
= 0001), who made his first purchase on the first day of the first quarter of
1997 (and therefore had T = 38.86 weeks within which he could make repeat
transactions). During this period, he made x = 2 additional transactions
at the CDNOW web site, with the last transaction occurring on the third
day of week 30 (tx = 30.43). We wish to compute the expected number of
transactions in weeks 40–78 (i.e., t = 39).

Central to equation (3) is the Gaussian hypergeometric function. We
evaluate it using the method outlined in Section 4. The function parameters
(a, b, c) are given in cells E2:E4 and the function argument (z) in cell E5.
Once again, we evaluate the first 151 terms of the series (cells E7:E157)
and the sum of these terms is reported in cell E1. The computation of
E(Y (t) |X = x, tx, T ) follows naturally in cell C11.

We would therefore expect this customer to make 1.2 transactions across
weeks 40–78. We can make such calculations for other customers by entering
their specific purchase histories (X = x, tx, T ) and the forecast horizon (t)
in cells B6:B9; the forecast of their expected future transaction levels will
appear in cell C11.
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