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1. Introduction

Several models for customer-base analysis, such as the Pareto/NBD model
developed by Schmittlein, Morrison, and Colombo (1987) and the BG/NBD
model developed by Fader, Hardie, and Lee (2004), extend the basic NBD
model (Morrison and Schmittlein 1988) by allowing for a customer “dropout”
process. Missing from the various empirical applications of these models is
an explicit examination of the value of such a “dropout” process. In other
words, what is the performance of these models compared to that of the
basic NBD model? We undertake such an examination in this note, doc-
umenting the steps associated with the implementation of the NBD in a
spreadsheet environment.

There are four key stages to the implementation of the NBD benchmark
model: (i) estimating the model parameters, (ii) creating the expected fre-
quency distribution of transactions given these parameter estimates, (iii)
generating the aggregate sales forecast, and (iv) predicting a particular cus-
tomer’s future purchasing, given information about his past behavior and
the parameter estimates. The specific steps are outlined in sections 3–6
below. Section 2 briefly describes the nature of the data used for model
calibration. All these sections should be read in conjunction with the Excel
spreadsheet nbd benchmark.xls.

† c© 2004 Peter S. Fader and Bruce G. S. Hardie. This document and the associated
spreadsheet can be found at <http://brucehardie.com/notes/005/>.
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2. Data

The worksheet Raw Data contains data for a sample of 2357 CDNOW cus-
tomers who made their first purchase at the web site during the first quarter
of 1997. We have information on their repeat purchasing behavior up to the
end of week 39 of 1997. We have two pieces of information about each
customer’s purchasing behaviour: his “frequency” (how many repeat trans-
actions he made in a specified time period), and the length of time over
which we have had an opportunity to observe any repeat purchasing behav-
ior. The notation used to represent this information is (X = x, T ), where x
is the number of transactions observed in the time period (0, T ].

While the basic unit of time is one week, we recognize that transactions
can occur on each day of the week. Therefore consider customer 0001 (row
2). The number of days (in weeks) during which repeat transactions could
have occurred is T = 38.86, which implies this customer made his first-ever
purchase at CDNOW on the first day of the first week of 1997. Over this
time period, this customer made x = 2 repeat transactions.

3. Parameter Estimation

Let X(t) be the number of events occurring in the interval (0, t]. The NBD
model is based on the following two assumptions:

• X(t) is distributed Poisson distribution with mean λt, and

• transaction rates (λ) are distributed across the population according
to a gamma distribution with parameters r and α.

It follows that

P (X(t) = x) =
∫ ∞

0

(λt)xe−λt

x!︸ ︷︷ ︸
Poisson

gamma︷ ︸︸ ︷
αrλr−1e−αλ

Γ(r)
dλ

=
Γ(r + x)
Γ(r)x!

(
α

α + t

)r (
t

α + t

)x

(1)

So as to facilitate the comparison of model log-likelihood function values,
we fit the timing-model equivalent of the basic NBD model (Gupta and
Morrison 1991) to the CDNOW dataset. The associated likelihood function
for a randomly-chosen customer with transaction history (X = x, T ) is

L(r, α |X = x, T ) =
Γ(r + x)
Γ(r)

(
α

α + T

)r (
1

α + T

)x

(2)

(Note that (1) and (2) only differ by a factor of tx/x!, which is independent
of r and α.)
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Suppose we have a sample of N customers, where customer i had Xi = xi

transactions in the interval (0, Ti]. The sample log-likelihood function is

LL(r, α |data) =
N∑

i=1

ln
[
L(r, α |Xi = xi, Ti)

]
(3)

Our task is to “code up” this expression in an Excel worksheet and find the
maximum likelihood estimates of the model parameters r and α by using
the Solver add-in to find the maximum of this function.

We start by making a copy of the Raw Data worksheet— let’s call it
"NBD" Estimation—and inserting four rows at the top of the worksheet.
The first thing we need to do is to create an expression for ln

[
L(r, α |X =

x, T )
]
for each of the 2357 customers in the sample. In order to create

the corresponding expression in the spreadsheet without an error message
appearing (e.g., #NUM! or #DIV/0!), we need some so-called starting values
for r and α. Provided they are within the defined bounds (r, α > 0), the
exact values do not matter. We start with 1.0 for both parameters and
locate these values in cells B1:B2.

The log of the expression given in equation (2) is

ln
[
Γ(r + x)

] − ln
[
Γ(r)

]
+ r ln(α) − (r + x) ln(α + T )

The formula in cell D6 is simply the expression of this for the first customer:

=GAMMALN($B$1+B6)-GAMMALN($B$1)
+$B$1*LN($B$2)-($B$1+B6)*LN($B$2+C6)

We then copy this down to cell D2362.
The sum of these 2357 values is found in cell B3; this is the value of

the log-likelihood function, equation (3), given the values for the two model
parameters in cells B1:B2. (With starting values of 1.0 for both parameters,
LL = −14924.92.)

Given these sample data, we find the maximum likelihood estimates of
r and α by maximizing the log-likelihood function. We do this using the
Excel add-in Solver, available under the “Tools” menu. The target cell is
the value of the log-likelihood function (cell B3); we wish to maximize this
by changing cells B1:B2. The constraints we place on the parameters are
that both r and α are greater than 0. As Solver only offers us a “greater
than or equal to” constraint, we add the constraint that cells B1:B2 are ≥ a
small positive number (e.g., 0.00001). Clicking the Solve button, Solver finds
the values of r and α that maximize the log-likelihood function; these are
the maximum likelihood estimates of the model parameters. The maximum
value of the log-likelihood function is −9763.66, associated with r = 0.385
and α = 12.072.

As noted in Fader et al. (2004), the log-likelihood function values for the
Pareto/NBD and BG/NBD models are −9595.0 and −9582.4, respectively.
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On the basis of the BIC model selection criterion, we conclude that both the
BG/NBD and Pareto/NBD models provide a far better fit to the data than
that of the basic NBD model, indicating the value of including a dropout
process.

As an aside, let us also estimate the parameters of the NBD model using
its standard counting form (as opposed to the timing equivalent considered
above)—see the NBD Estimation worksheet.

For sample of N customers, where customer i had Xi = xi transactions
in the period (0, Ti],the log-likelihood function given by is

LL(r, α |data) =
N∑

i=1

ln
[
P (X(Ti) = xi | r, α)

]
(4)

We first compute P (X(t) = x), equation (1), for each customer; the
formula in cell D6 is simply this expression for the first customer:

=EXP(GAMMALN($B$1+B6)-GAMMALN($B$1))/FACT(B6)
*($B$2/($B$2+C6))ˆ$B$1*(C6/($B$2+C6))ˆB6

We then take the log of the probability in cell E6, and copy these two cells
down to row 2362. The sum of cells E6:E2362 is found in cell B3; this is the
value of the log-likelihood function, equation (4), given the values for the
two model parameters in cells B1:B2. (With starting values of 1.0 for both
parameters, LL = −8354.32.) We find the maximum likelihood estimates
of r and α by maximizing the log-likelihood function using Solver. The
maximum value of the log-likelihood function is −3193.06, associated with
r = 0.385 and α = 12.072.

4. Predicted Distribution of Transactions

Another way of assessing the fit of a model is to compare the actual frequency
distribution of transaction counts (how many people made 0, 1, 2, . . . repeat
transactions) with that predicted by the model.

Let fx denote the number of people making x repeat transactions in the
39-week model calibration period (x = 0, 1, 2, . . . ). The actual frequency
distribution of repeat transaction counts can easily be determined using the
“pivot tables” feature in Excel. Going back to the Raw Data worksheet,
we select the PivotTable and PivotChart ... under the Data menu. We
use x as the row field and use ID as the data item. The resulting table
is reported in the Actual Frequency Distribution worksheet. Using this
full distribution, we create a right-censored distribution in which counts
greater than 7 are collapsed into a 7+ bin.

In this particular example, the task of computing the expected frequency
distribution is slightly complicated by the fact that the time period over
which repeat transactions could have occurred varies across customers. Let
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ns is the number of customers who made their first purchase at CDNOW on
day s of 1997 (and therefore have t − s

7 weeks within which to make repeat
purchases). It follows that the expected number of people in this cohort
of new customers with x repeat transactions is computed in the following
manner:

E(fx) =
84∑

s=1

nsP (X(t − s
7) = x) , x = 0, 1, 2, . . . (5)

The first step is to determine ns, which we do using Excel’s pivot table
tool. We start by making a copy of the Raw Data worksheet— let’s call it
n s. Given T , the number of days (in weeks) during which repeat transac-
tions could have occurred in the 39-week calibration period, it follows that
the “time of first purchase” (column D) is simply 39 − T . Selecting the
PivotTable and PivotChart ... under the Data menu, we use “time of first
purchase” as the row field and use ID as the data item. We see that 18
people made their first-ever purchase at CDNOW on the first day of the
first week of 1997, 22 on the second day of the first week of 1997, ..., and 30
on the seventh day of the twelfth week of 1997.

For the NBD applied to a observation period of length t, it is easy to show
that we can compute the probabilities using the following forward recursion
formula:

P (X(t) = x) =




(
α

α + t

)r

x = 0

(r + x − 1)t
x(α + t)

P (X(t) = x − 1) x = 1, 2, . . .

with P (X(t) ≥ 7) = 1 =
∑6

x=0 P (X(t) = x)
In columns F–CK of the Histogram worksheet, we use this formula to

compute P (X(T ) = x) (x = 0, 1, . . . , 7+) for each of the 84 possible values
of T , the time period during which repeat transactions could have occurred.
The E(fx), equation (5), are computed in cells C6:C13.

The expected numbers of people with 0, 1, . . . , 7+ repeat transactions
in the 39-week model calibration period for the NBD, Pareto/NBD, and
BG/NBD models are compared with the actual frequency distribution in
Figure 1.

A quick visual inspection suggests that the fits of the three models are
very close. On the basis of the chi-square goodness-of-fit test, we find that
the BG/NBD model provides the best fit to the data (χ2

3 = 4.82, p = 0.19).
In contrast to the comparison based on the log-likelihood function values, we
find the NBD model fits the data surprisingly well (χ2

5 = 10.27, p = 0.07).
Both models dominate the Pareto/NBD model (χ2

3 = 11.99, p = 0.007).
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Figure 1: Predicted versus Actual Frequency of Repeat Transactions

5. Aggregate Sales Forecast

Any value in extending the basic NBD model by allowing for customer
“dropout” is not immediately apparent from the above analysis. To fur-
ther examine the NBD’s performance as a benchmark model, we consider
how well its predictions of total repeat transactions track the actual numbers
over time, during both the 39-week calibration period and the subsequent
39-week “forecast” period.

For a randomly-chosen individual, the expected number of transactions
in a time period of length t is given by the mean of the NBD,

E(X(t) | r, α) = rt

α
.

However, we are not interested in the expected number of repeat transac-
tions for a randomly-chosen individual; rather we are interested in tracking
(and forecasting) the total number of repeat transactions by the cohort of
customers. In computing this cohort-level number, we need to control for
the fact that different customers made their first purchase at CDNOW at
84 different days during the first quarter of 1997. Therefore, total repeat
transactions can be computed as follows:

Total Repeat Transactions by t =
84∑

s=1

δ(t> s
7 )nsE[X(t − s

7)] , (6)

where ns is the number of customers who made their first purchase at CD-
NOW on day s of 1997 and δ(t> s

7 ) = 1 if t > s
7 , 0 otherwise.

Referring to the worksheet Aggregate Repeat Sales, columns J–CO see
us computing E[X(t)] for calendar time t = 1/7, 2/7, . . . , 78. (The formulae
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in cells J6:CO551 shift calendar time to time since first purchase.) The final
step in the evaluation of equation (6) is performed in cells I6:I551. Cells
C6:C83 report the cumulative number of repeat transactions for each of the
78 weeks (using the =OFFSET() function to “pick out” the relevant numbers
from column I). The expected number of weekly repeat transactions are
reported in cells F6:F83.

In Figure 2 we see how well the predictions of total repeat transactions
from the NBD, Pareto/NBD, and BG/NBDmodels track the actual numbers
over time. We immediately observe that the NBD not only fails to track
actual sales in the 39-week calibration period, but also deviates significantly
from the actual sales trajectory over the subsequent 39 weeks. By the end
of June 1998, the NBD model is over-forecasting by 24%; in contrast, the
Pareto/NBD and BG/NBD models under-forecast total cumulative repeat
transactions by 2% and 4%, respectively.

0 10 20 30 40 50 60 70 80
0

1000

2000

3000

4000

5000

6000

Week

# 
tr

an
sa

ct
io

ns

Actual
BG/NBD
Pareto/NBD
NBD

Figure 2: Predicted versus Actual Cumulative Repeat Transactions

The value of extending the basic NBD model by adding a “dropout”
process becomes very clear when we examine the corresponding week-by-
week repeat-transaction numbers (Figure 3). The sales figures rise through
the end of week 12, as new customers continue to enter the cohort, but
after that point it is a fixed group of 2357 eligible buyers. The NBD pre-
dicts a constant level of repeat transactions; in contrast, the Pareto/NBD
and BG/NBD models predict a decline in the level of repeat transaction as
customers become inactive. We note that the BG/NBD and Pareto/NBD
models track the underlying trend in repeat-buying behavior, albeit with ob-
vious deviations because of promotional activities and the December holiday
season.
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Figure 3: Predicted versus Actual Weekly Repeat Transactions

6. Conditional Expectations

Our final, and perhaps most critical, examination of the NBD’s performance
as a benchmark model focuses on the quality of individual-level predictions
of future behaviour, conditional on the number of observed transactions in
the model calibration period.

More specifically, we are interested in E[Y (t) |data], the expected num-
ber of transactions in an adjacent period (T, T + t], conditional on the ob-
served purchase history. We call this the conditional expectation.

For the NBD model, a straight-forward application of Bayes’ theorem
gives us (Morrison and Schmittlein 1988)

E
[
Y (t)|X = x, T, r, α

]
=

(
r + x

α + T

)
t ,

where t = 39 for our analysis. We compute this conditional expectation for
each of the 2357 customers in the worksheet Conditional Expectation.
Using the “pivot tables” feature, we then compute the average conditional
expectation by the number of calibration-period repeat transactions (right-
censoring at 7).

These NBD conditional expectations (as well as those associated with
the Pareto/NBD and BG/NBD models) are reported in Figure 4, along
with the average of the actual number of transactions that took place in
the forecast period, broken down by the number of calibration-period re-
peat transactions. Once again, we see that the NBD model generates poor
individual-level predictions of the expected number of transactions in weeks
40–78. Similarly, the BG/NBD and Pareto/NBD models provide excellent
predictions.
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Figure 4: Conditional Expectations

7. Conclusions

In comparing the NBD, Pareto/NBD, and BG/NBD models in a customer-
base analysis setting, we have been able to examine the value of extending
the basic NBD model by allowing for customer “dropout”.

• We conclude that both the BG/NBD and Pareto/NBD models provide
a far better fit to the data than that of the basic NBD model, when
model fit is assessed on the basis of the value of the log-likelihood
function.

• However, the conclusion is not so clear when we examine the fit of the
expected frequency distribution of transactions (as computed using
each model) to the actual distribution of repeat transaction counts—
the fit of the NBD dominates that of the Pareto/NBD.

• When considering the ability of each model to track the total number
of repeat transactions (for the whole cohort of customers) over time,
during both the 39-week calibration period and the subsequent 39-
week “forecast” period, the poor performance of the basic NBD model
is clearly illustrated in Figures 2 and 3.

• Turning from aggregate-level predictions to individual-level predic-
tions, we find that the conditional expectations of future purchasing
generated using the NBD are consistently higher than the actual num-
bers, whereas the BG/NBD and Pareto/NBD models provide excellent
predictions.

We can therefore conclude that there is value in extending the basic NBD
model by allowing for customer “dropout”. We would encourage researchers
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involved in the development of models for customer-base analysis to use
models such as the Pareto/NBD and BG/NBD as benchmark models in
their analyses. Furthermore, we would encourage them to compute and
examine the types of performance measures and managerial diagnostics (i.e.,
tracking/forecasting aggregate purchasing and individual-level conditional
expectations) used in this note.
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