
Generating a Sales Forecast With
a Simple Depth-of-Repeat Model

Peter S. Fader
www.petefader.com

Bruce G. S. Hardie†

www.brucehardie.com

May 2004

1. Introduction

Central to diagnosing the performance of a new product is the decomposition
of its total sales into trial, first repeat, second repeat, and so on, components:

S(t) = T (t) + R1(t) + R2(t) + R3(t) + · · ·
where S(t) is the cumulative sales volume up to time t (assuming that only
one unit is purchased on each purchase occasion), T (t) equals the cumulative
number of people who have made a trial purchase by time t, and Rj(t)
denotes the number of people who have made at least j repeat purchases of
the new product by time t (j = 1, 2, 3, . . .).

• We can decompose T (t) in the following manner:

T (t) = NF0(t) (1)

where N is number of customers whose purchases are being monitored
and F0(t) is the proportion of customers who have made their trial
purchase by t.

• We can decompose the Rj(t) by conditioning on the time at with the
(j − 1)th purchase occurred:1

Rj(t) =
t−1∑

tj−1=j

Fj(t | tj−1)
[
Rj−1(tj−1) − Rj−1(tj−1 − 1)

]
(2)

† c© 2004 Peter S. Fader and Bruce G. S. Hardie. This document can be found at
<http://brucehardie.com/notes/007/>.

1Eskin, Gerald J. (1973), “Dynamic Forecasts of New Product Demand Using a Depth
of Repeat Model,” Journal of Marketing Research, 10 (May), 115–129.

1

where Fj(t | tj−1) is the proportion of customers who have made a jth
repeat purchase by t, given that their (j − 1)th repeat purchase was
made in period tj−1, and Rj−1(tj−1)−Rj−1(tj−1 −1) is the number of
individuals who made their (j − 1)th repeat purchase in time period
tj−1. (Note that R0(t) = T (t) and Rj(t) = 0 for t ≤ j.)

Equations (1) and (2) are simply definitional. If we specify mathematical
expressions for F0(t) and the Fj(t | tj−1), we arrive at a model of new product
sales. In our 2004 ART Forum tutorial “Forecasting Repeat Buying for
New Products and Services”, we present the following model, with separate
submodels for trial, first repeat (denoted by FR(t) instead of R1(t)) and
additional repeat (AR(t) = R2(t) + R3(t) + · · ·):

For trial, we have

T (t) = NP (trial by t) (3)

P (trial by t) = p0(1 − e−θT t) (4)

For first repeat, we have

FR(t) =
t−1∑
t0=1

P (first repeat by t | trial at t0)
[
T (t0) − T (t0 − 1)

]
(5)

P (first repeat by t | trial at t0) = p1
(
1 − e−θFR(t−t0)) (6)

For additional repeat (j ≥ 2), we have

AR(t) =
∞∑

j=2

Rj(t) (7)

Rj(t) =
t−1∑

tj−1=j

{
P (jth repeat by t | (j − 1)th repeat at tj−1)

× [
Rj−1(tj−1) − Rj−1(tj−1 − 1)

]}
(8)

P (jth repeat by t | (j − 1)th repeat at tj−1)

= pj

(
1 − e−θAR(t−tj−1)

)
(9)

pj = p∞(1 − e−γj) (10)

As demonstrated in the tutorial, it is very easy to calibrate the model
parameters within a spreadsheet environment. For the Kiwi Bubbles dataset
(from a panel of N = 1499 households) with a 24-week calibration period,
we have

p0 θT p1 θFR p∞ γ θAR

0.08620 0.06428 0.36346 0.46140 0.78158 1.00140 0.23094

2

Given these parameter estimates, we can first generate a forecast of
trial, then a forecast of first repeat (conditional on the trial forecast), then
a forecast of second repeat (conditional on the first-repeat forecast), and so
on. For a forecast horizon of tf periods, we should (in theory) allow for
up to tf − 1 levels of repeat2 and the process of “coding up” (3)–(10) in a
spreadsheet environment is rather cumbersome. It is much easier to write a
small stand-alone program to do the task.

In this note, we present programs written in Perl and MATLAB for gen-
erating the sales forecast.3 Any interested reader should have no difficultly
in “translating” one of these programs into his/her favourite language, be it
Basic, C, Fortran, SAS/IML, etc.

2. Forecasting Trial Transactions

Our goal is to generate a (cumulative) sales forecast for the new product up
to the end of the year (week 52). We start by generating a forecast of T (t),
the cumulative number of trial transactions by t, for t = 1, . . . , 52.

Given p̂0 and θ̂T , we substitute (2) and (1) and loop over t. In Perl, we
using the following code:

my $N = 1499; # number of panelists
my $endwk = 52; # length of forecast period
my $p_0 = 0.08620;
my $theta_T = 0.06428;
for ($t = 1; $t <= $endwk; $t++){
$trial[$t] = $N*$p_0*(1-exp(-$theta_T*$t));

}

Given that the basic data element in MATLAB is an array, there is no
need to loop over time; we simply specify the vector of time points at which
we want to evaluate (1) and (2):

N = 1499; % number of panelists
endwk = 52; % length of forecast period
p_0 = 0.08620;
theta_T = 0.06428;
trial = N*p_0*(1-exp(-theta_T*[1:endwk]’));

2Under the assumption that a customer can have only one transaction per unit of time,
the earliest point in time a first repeat purchase can occur is period 2. Following this logic,
the summation limit in (7) should really be t − 1, not ∞.

3There is nothing magical about our choice of these programming environments. Why
Perl? It’s free and is ideally suited for “quick and dirty” programming tasks such as this
one. Furthermore, it is very easy to pick up if you have any programming experience. Why
MATLAB? It’s a very powerful modelling environment that we use in our own research,
development, and analysis activities.

3

3. Forecasting First-Repeat Transactions

The next step is to generate a forecast of first-repeat purchasing, conditional
on our forecast of trial transactions. We have generated a forecast of T (t),
the cumulative number of trial transactions by t, whereas our expression for
FR(t), (5), requires the incremental number of triers in each period. We
compute this quantity, storing it in the array eligible. At the time time,
we use (6) to compute the probability of making a first repeat purchase t
periods after a trial purchase (t = 1, . . . , 52). Given these two quantities,
we use (5) to compute FR(t), looping over t. In Perl, we using the following
code:

my $p_1 = 0.36346;
my $theta_FR = 0.46140;
for ($t = 1; $t <= $endwk; $t++){
if ($t gt 1){
$eligible[$t]=$trial[$t]-$trial[$t-1];

} else {
$eligible[$t]=$trial[$t];

}
$prob[$t] = $p_1*(1-exp(-$theta_FR*$t));

}
for ($t = 1; $t <= $endwk; $t++){
$repeat[$t] = 0;
for ($k = 1; $k <= $t-1; $k++){
$repeat[$t]=$repeat[$t]+$eligible[$k]*$prob[$t-$k];

}
}

The array-based nature of MATLAB means we are able to replace the
double loop over $t and $k with a single multiplication operation:

p_1 = 0.36346;
theta_FR = 0.46140;
eligible = [trial(1);diff(trial)];
prob = p_1*(1-exp(-theta_FR*[1:endwk]’));
for i = 1:endwk

probmat(:,i) = [zeros(i,1); prob(1:endwk-i)];
end;
repeat(:,1) = probmat*eligible;

4. Forecasting Additional Repeat Transactions

To forecast additional repeat, we first compute second repeat (conditional
on our forecast of first repeat), then compute third repeat (conditional on
our forecast of second repeat), and so on. The code we use to accomplish
this is basically the same as that for first repeat, embedded within a loop

4

over depth-of-repeat levels. Given the assumption that a customer can have
only one transaction per period, we could theoretically have up to 51 depth-
of-repeat levels for a 52-week forecast horizon. Another consequence of this
assumption is that the first week in which a jth repeat purchase could occur
is week j + 1; this means Rj(t) = 0 for t ≤ j.

We compute (8)–(10) for each of the depth-of-repeat levels using the
following Perl code:

my $p_inf = 0.78158;
my $gamma = 1.00140;
my $theta_AR = 0.23094;
for ($dor = 2; $dor <= $endwk-1; $dor++){
$p_j = $p_inf*(1-exp(-$gamma*$dor));
for ($t = 1; $t <= $endwk; $t++){
if ($t gt 1){
$eligible[$t] = $repeat[($dor-2)*$endwk+$t]
-$repeat[($dor-2)*$endwk+$t-1];

} else {
$eligible[$t] = $repeat[($dor-2)*$endwk+$t];

}
$prob[$t] = $p_j*(1-exp(-$theta_AR*$t));

}
for ($t = 1; $t <= $endwk; $t++){
$repeat[($dor-1)*$endwk+$t] = 0;
for ($k = $dor; $k <= $t-1; $k++){
$repeat[($dor-1)*$endwk+$t]
= $repeat[($dor-1)*$endwk+$t]+$eligible[$k]*$prob[$t-$k];

}
}

}

In MATLAB, these calculations are performed using the following code:

p_inf = 0.78158;
gamma = 1.00140;
theta_AR = 0.23094;
p_j = p_inf*(1-exp(-gamma*[2:endwk-1]));
for dor = 2:endwk-1

eligible = [repeat(1,dor-1);diff(repeat(:,dor-1))];
prob = p_j(dor-1)*(1-exp(-theta_AR*[1:endwk]’));
for i = 1:endwk

probmat(:,i) = [zeros(i,1); prob(1:endwk-i)];
end;
repeat(:,dor) = probmat*eligible;

end;

Note that the MATLAB code stores the repeat-sales forecasts in a two-
dimensional array (week × depth-of-repeat level). Perl has no support for

5

multidimensional arrays. While can we can emulate a two-dimensional array
by creating an array that contains references to other arrays, our Perl code
takes the less elegant but more transparent approach of creating a one-
dimensional array with 51 × 52 = 2652 elements. The first 52 elements
contain the first-repeat numbers for weeks 1, . . . , 52; the second 52 elements
contain the second-repeat numbers for weeks 1, . . . , 52; and so on.

5. Bringing It All Together

We can now compute AR(t) = R2(t) + · · · + R52(t), and print out our
forecasts of T (t), FR(t), AR(t), and S(t) (= T (t) + FR(t) + AR(t)). Our
complete Perl code is given in Figure 1; the corresponding MATLAB code is
given in Figure 2. The forecasts generated by these programs are presented
in Figures 3 and 4, respectively. As would be expected, these forecasts are
identical.

6

#!perl
forecast.pl -- generates a sales forecast using a
simple depth-of-repeat model

use strict;
my ($t, $k, $dor, $p_j);
my (@trial, @repeat, @ar, @totsls, @eligible, @prob);

my $N = 1499; # number of panelists
my $endwk = 52; # length of forecast period

Generate forecast of expected trial sales
trial model parameters
my $p_0 = 0.08620;
my $theta_T = 0.06428;
for ($t = 1; $t <= $endwk; $t++){

$trial[$t] = $N*$p_0*(1-exp(-$theta_T*$t));
}

Generate forecast of expected first repeat sales
FR model parameters
my $p_1 = 0.36346;
my $theta_FR = 0.46140;
for ($t = 1; $t <= $endwk; $t++){

if ($t gt 1){
$eligible[$t]=$trial[$t]-$trial[$t-1];

} else {
$eligible[$t]=$trial[$t];

}
$prob[$t] = $p_1*(1-exp(-$theta_FR*$t));

}
for ($t = 1; $t <= $endwk; $t++){

$repeat[$t] = 0;
for ($k = 1; $k <= $t-1; $k++){

$repeat[$t]=$repeat[$t]+$eligible[$k]*$prob[$t-$k];
}

}

Generate forecast of additional repeat sales
AR model parameters
my $p_inf = 0.78158;
my $gamma = 1.00140;
my $theta_AR = 0.23094;
for ($dor = 2; $dor <= $endwk-1; $dor++){

$p_j = $p_inf*(1-exp(-$gamma*$dor));
for ($t = 1; $t <= $endwk; $t++){

if ($t gt 1){
$eligible[$t] = $repeat[($dor-2)*$endwk+$t]-$repeat[($dor-2)*$endwk+$t-1];

} else {
$eligible[$t] = $repeat[($dor-2)*$endwk+$t];

}
$prob[$t] = $p_j*(1-exp(-$theta_AR*$t));

}
for ($t = 1; $t <= $endwk; $t++){

$repeat[($dor-1)*$endwk+$t] = 0;
for ($k = $dor; $k <= $t-1; $k++){

$repeat[($dor-1)*$endwk+$t] = $repeat[($dor-1)*$endwk+$t]+$eligible[$k]*$prob[$t-$k];
}

}
}

Compute total additional repeat and total sales and
display results
for ($t = 1; $t <= $endwk; $t++){

$ar[$t] = 0;
for ($dor = 2; $dor <= $endwk-1; $dor++){

$ar[$t] = $ar[$t] + $repeat[($dor-1)*$endwk+$t];
}
$totsls[$t] = $trial[$t] + $repeat[$t] + $ar[$t];

}
for ($t = 1; $t <= $endwk; $t++){

printf "%3d %12.4f %12.4f %12.4f %12.4f\n", $t, $trial[$t], $repeat[$t], $ar[$t], $totsls[$t];
}

Figure 1: Complete Perl code (forecast.pl)

7

% forecast.m -- generates a sales forecast using a
% simple depth-of-repeat model

N = 1499; % number of panelists
endwk = 52; % length of forecast period

% Generate forecast of expected trial sales
% trial model parameters
p_0 = 0.08620;
theta_T = 0.06428;
trial = N*p_0*(1-exp(-theta_T*[1:endwk]’));

repeat = zeros(endwk,endwk-1);
probmat = zeros(endwk,endwk);

% Generate forecast of expected first repeat sales
% FR model parameters
p_1 = 0.36346;
theta_FR = 0.46140;
eligible = [trial(1);diff(trial)];
prob = p_1*(1-exp(-theta_FR*[1:endwk]’));
for i = 1:endwk

probmat(:,i) = [zeros(i,1); prob(1:endwk-i)];
end;
repeat(:,1) = probmat*eligible;

% Generate forecast of additional repeat sales
% AR model parameters
p_inf = 0.78158;
gamma = 1.00140;
theta_AR = 0.23094;
p_j = p_inf*(1-exp(-gamma*[2:endwk-1]));
for dor = 2:endwk-1

eligible = [repeat(1,dor-1);diff(repeat(:,dor-1))];
prob = p_j(dor-1)*(1-exp(-theta_AR*[1:endwk]’));
for i = 1:endwk

probmat(:,i) = [zeros(i,1); prob(1:endwk-i)];
end;
repeat(:,dor) = probmat*eligible;

end;

% Compute total additional repeat and total sales and
% display results
ar = sum(repeat(:,2:endwk-1),2);
totsls = trial + sum(repeat,2);
disp([[1:endwk]’ trial repeat(:,1) ar totsls]);

Figure 2: Complete MATLAB code (forecast.m)

8

D:\>perl -w forecast.pl
1 8.0445 0.0000 0.0000 8.0445
2 15.5882 1.0807 0.0000 16.6689
3 22.6623 2.7753 0.1507 25.5883
4 29.2959 4.7939 0.5296 34.6194
5 35.5166 6.9575 1.1700 43.6441
6 41.3500 9.1571 2.0785 52.5856
7 46.8201 11.3274 3.2463 61.3938
8 51.9498 13.4304 4.6562 70.0363
9 56.7601 15.4452 6.2866 78.4918

10 61.2708 17.3615 8.1144 86.7467
11 65.5008 19.1755 10.1161 94.7924
12 69.4674 20.8873 12.2693 102.6240
13 73.1871 22.4992 14.5525 110.2388
14 76.6752 24.0151 16.9457 117.6359
15 79.9461 25.4393 19.4306 124.8159
16 83.0134 26.7765 21.9903 131.7802
17 85.8897 28.0315 24.6096 138.5308
18 88.5870 29.2090 27.2745 145.0705
19 91.1163 30.3137 29.9726 151.4025
20 93.4882 31.3498 32.6923 157.5303
21 95.7124 32.3216 35.4237 163.4577
22 97.7981 33.2331 38.1576 169.1888
23 99.7539 34.0878 40.8859 174.7277
24 101.5880 34.8894 43.6013 180.0787
25 103.3080 35.6411 46.2974 185.2465
26 104.9208 36.3460 48.9686 190.2354
27 106.4332 37.0070 51.6099 195.0501
28 107.8515 37.6269 54.2168 199.6952
29 109.1815 38.2082 56.7856 204.1752
30 110.4286 38.7533 59.3129 208.4949
31 111.5981 39.2645 61.7961 212.6587
32 112.6948 39.7439 64.2326 216.6713
33 113.7233 40.1934 66.6205 220.5371
34 114.6877 40.6149 68.9581 224.2606
35 115.5920 41.0102 71.2440 227.8463
36 116.4401 41.3809 73.4774 231.2983
37 117.2354 41.7284 75.6573 234.6211
38 117.9811 42.0544 77.7832 237.8187
39 118.6804 42.3601 79.8547 240.8952
40 119.3362 42.6467 81.8718 243.8548
41 119.9512 42.9155 83.8345 246.7012
42 120.5278 43.1675 85.7429 249.4383
43 121.0686 43.4039 87.5973 252.0698
44 121.5757 43.6255 89.3982 254.5995
45 122.0512 43.8334 91.1461 257.0308
46 122.4972 44.0283 92.8417 259.3671
47 122.9153 44.2111 94.4856 261.6120
48 123.3074 44.3825 96.0786 263.7685
49 123.6752 44.5432 97.6216 265.8400
50 124.0200 44.6939 99.1155 267.8294
51 124.3433 44.8352 100.5612 269.7398
52 124.6466 44.9678 101.9597 271.5740

D:\>

Figure 3: Output generated by forecast.pl

9

>> forecast
1.0000 8.0445 0 0 8.0445
2.0000 15.5882 1.0807 0 16.6689
3.0000 22.6623 2.7753 0.1507 25.5883
4.0000 29.2959 4.7939 0.5296 34.6194
5.0000 35.5166 6.9575 1.1700 43.6441
6.0000 41.3500 9.1571 2.0785 52.5856
7.0000 46.8201 11.3274 3.2463 61.3938
8.0000 51.9498 13.4304 4.6562 70.0363
9.0000 56.7601 15.4452 6.2866 78.4918

10.0000 61.2708 17.3615 8.1144 86.7467
11.0000 65.5008 19.1755 10.1161 94.7924
12.0000 69.4674 20.8873 12.2693 102.6240
13.0000 73.1871 22.4992 14.5525 110.2388
14.0000 76.6752 24.0151 16.9457 117.6359
15.0000 79.9461 25.4393 19.4306 124.8159
16.0000 83.0134 26.7765 21.9903 131.7802
17.0000 85.8897 28.0315 24.6096 138.5308
18.0000 88.5870 29.2090 27.2745 145.0705
19.0000 91.1163 30.3137 29.9726 151.4025
20.0000 93.4882 31.3498 32.6923 157.5303
21.0000 95.7124 32.3216 35.4237 163.4577
22.0000 97.7981 33.2331 38.1576 169.1888
23.0000 99.7539 34.0878 40.8859 174.7277
24.0000 101.5880 34.8894 43.6013 180.0787
25.0000 103.3080 35.6411 46.2974 185.2465
26.0000 104.9208 36.3460 48.9686 190.2354
27.0000 106.4332 37.0070 51.6099 195.0501
28.0000 107.8515 37.6269 54.2168 199.6952
29.0000 109.1815 38.2082 56.7856 204.1752
30.0000 110.4286 38.7533 59.3129 208.4949
31.0000 111.5981 39.2645 61.7961 212.6587
32.0000 112.6948 39.7439 64.2326 216.6713
33.0000 113.7233 40.1934 66.6205 220.5371
34.0000 114.6877 40.6149 68.9581 224.2606
35.0000 115.5920 41.0102 71.2440 227.8463
36.0000 116.4401 41.3809 73.4774 231.2983
37.0000 117.2354 41.7284 75.6573 234.6211
38.0000 117.9811 42.0544 77.7832 237.8187
39.0000 118.6804 42.3601 79.8547 240.8952
40.0000 119.3362 42.6467 81.8718 243.8548
41.0000 119.9512 42.9155 83.8345 246.7012
42.0000 120.5278 43.1675 85.7429 249.4383
43.0000 121.0686 43.4039 87.5973 252.0698
44.0000 121.5757 43.6255 89.3982 254.5995
45.0000 122.0512 43.8334 91.1461 257.0308
46.0000 122.4972 44.0283 92.8417 259.3671
47.0000 122.9153 44.2111 94.4856 261.6120
48.0000 123.3074 44.3825 96.0786 263.7685
49.0000 123.6752 44.5432 97.6216 265.8400
50.0000 124.0200 44.6939 99.1155 267.8294
51.0000 124.3433 44.8352 100.5612 269.7398
52.0000 124.6466 44.9678 101.9597 271.5740

>>

Figure 4: Output generated by forecast.m

10

