
A Note on Implementing the
Pareto/NBD Model in MATLAB

Peter S. Fader
www.petefader.com

Bruce G. S. Hardie
www.brucehardie.com

Ka Lok Lee†

www.kaloklee.com

March 2005

1. Introduction

This note describes a MATLAB-based implementation of the Pareto/NBD
model (Schmittlein et al. 1987). For illustrative purposes, we replicate and
extend the basic analyses reported in Fader et al. (2005a,b).

There are four general aspects to the implementation of this model:

1. estimation of model parameters,

2. generation of an aggregate sales forecast given these parameter esti-
mates,

3. computation of the probability that a particular customer is still “ac-
tive”, given information about his past behavior and the parameter
estimates, and

4. prediction of a particular customer’s future purchasing, given informa-
tion about his past behavior and the parameter estimates.

The specific steps are outlined in sections 3–6 below. Section 2 briefly de-
scribes the nature of the data used for model calibration.

Please note that the code presented in this
note is not supported by the authors.

† c© 2005 Peter S. Fader, Bruce G. S. Hardie, and Ka Lok Lee. This document and the
associated files can be found at <http://brucehardie.com/notes/008/>.

1

No reader should attempt to use this code unless they can, for example,
write their own MATLAB programs to estimate the parameters of simpler
models such as the NBD and BG/NBD (Fader et al. 2005a). And any
reader with such experience is clearly in a position to write their own code
to implement the Pareto/NBD model . . . and therefore has no need for this
note.

The following code requires MATLAB 6.0 (R12) or later.

2. Data

Be it for parameter estimation or the prediction of future customer-level
behavior, the Pareto/NBD requires three pieces of information about each
customer’s purchasing history: his “recency” (when his last transaction oc-
curred), “frequency” (how many transactions he made in a specified time
period), and the length of time over which we have observed his purchasing
behavior. The notation used to represent this information is (X = x, tx, T),
where x is the number of transactions observed in the time period (0, T] and
tx (0 < tx ≤ T) is the time of the last transaction. (If tx = 0, x = 0.)

The Individual-level Data worksheet in the cdnow data.xls work-
book contains data for a sample of 2357 CDNOW customers who made their
first-ever purchase at the web site during the first quarter of 1997. We have
information on their repeat purchasing behavior up to the end of week 39 of
1997. In addition to this (X = x, tx, T) information, we also have informa-
tion on the number of transactions made by each customer in the following
39-week period (where week 78 ended on 1998-06-30); this is denoted by
p2x.

While the basic unit of time is one week, we recognize that transactions
can occur on each day of the week. Consider customer 0001 (row 2); the
number of days (expressed in terms of fractional weeks) during which repeat
transactions could have occurred is T = 38.86, which implies this customer
made his first-ever purchase at CDNOW on the first day of the first week
of 1997. Over this time period, this customer made x = 2 repeat purchases,
with the second repeat purchase occurring on the third day of the 30th week
of 1997 (tx = 30.43). This customer made one additional purchase in the
following 39 weeks.

This dataset is read into MATLAB using the following script:

% load_data.m
%
% Script to load the CDNOW data from the spreadsheet cdnow_data.xls
%
% Assumes -- the spreadsheet cdnow_data.xls resides in the d:\ directory
%
% Peter S. Fader (http://petefader.com)
% Bruce G.S. Hardie (http://brucehardie.com)

2

% Ka Lok Lee (http://kaloklee.com)
%
% Last modified 2005-03-16

global p1x p2x tx T
tmpdata = xlsread(’d:\cdnow_data’,’Individual-level Data’,’b2:e2358’);
p1x = tmpdata(:,1);
tx = tmpdata(:,2);
T = tmpdata(:,3);
p2x = tmpdata(:,4);
clear tmpdata;

3. Parameter Estimation

The likelihood function for a randomly-chosen individual with purchase his-
tory (X = x, tx, T) is

L(r, α, s, β |X = x, tx, T) =
Γ(r + x)αrβs

Γ(r)

×
{

1
(α + T)r+x(β + T)s

+
(

s

r + s + x

)
A0

}

where for α ≥ β

A0 =
2F1

(
r + s + x, s + 1; r + s + x + 1; α−β

α+tx

)
(α + tx)r+s+x

− 2F1
(
r + s + x, s + 1; r + s + x + 1; α−β

α+T

)
(α + T)r+s+x

(1)

and for α ≤ β

A0 =
2F1

(
r + s + x, r + x; r + s + x + 1; β−α

β+tx

)
(β + tx)r+s+x

− 2F1
(
r + s + x, r + x; r + s + x + 1; β−α

β+T

)
(β + T)r+s+x

, (2)

where 2F1(·) is the Gaussian hypergeometric function.1

The four Pareto/NBD model parameters (r, α, s, β) can be estimated via
the method of maximum likelihood in the following manner. Suppose we
have a sample of N customers, where customer i had Xi = xi transactions
in the period (0, Ti], with the last transaction occurring at txi . The sample
log-likelihood function is given by

1At first glance, this expression for the Pareto/NBD likelihood function does not appear
to be the same as that presented in Schmittlein et al. (1987); but rest assured, it is correct.
This specific expression, along with the other results implemented in this note, is derived
in Fader and Hardie (2005).

3

LL(r, α, s, β) =
N∑

i=1

ln
[
L(r, α, s, β |Xi = xi, txi , Ti)

]
.

This can be maximized using standard numerical optimization routines. Of
course, this assumes it is easy for us to evaluate the Gaussian hypergeometric
function for a given set of parameters.

The Gaussian hypergeometric function is the power series of the form

2F1(a, b; c; z) =
∞∑

j=0

(a)j(b)j
(c)j

zj

j!
, c �= 0,−1,−2, . . . ,

where (a)j is Pochhammer’s symbol, which denotes the ascending factorial
a(a+1) · · · (a+ j − 1). (Note that an ascending factorial can be represented
as the ratio of two gamma functions, (a)j = Γ(a + j)/Γ(a).) The series
converges for |z| < 1 and is divergent for |z| > 1; if |z| = 1, the series
converges for c − a − b > 0.

Writing

2F1(a, b; c; z) =
∞∑

j=0

uj , where uj =
(a)j(b)j
(c)j

zj

j!

we have the following recursive expression for each term of the series:

uj

uj−1
=

(a + j − 1)(b + j − 1)
(c + j − 1)j

z , j = 1, 2, 3, . . .

where u0 = 1.
This lends itself to a simple (and relatively robust) numerical method

for the evaluation of the Gaussian hypergeometric function: continue adding
terms to the series until uj is less than “machine epsilon” (the smallest
number that a specific computer recognizes as being bigger than zero). This
is implemented in MATLAB using the following function:

function y = h2f1(a,b,c,z)
% h2f1 -- Gaussian hypergeometric function
%
% Computes the Gaussian hypergeometric function by series expansion,
% iterating to machine epsilon
%
% Syntax: h2f1(a,b,c,z) where a,b,c,z are scalars or column vectors.
%
% WARNING: this is *very* crude code
% -- it doesn’t perform basic checks such as |z| < 1 or c-a-b > 0
% for |z| = 1
% -- it doesn’t recognize special cases such as a = c and b = c
% -- it doesn’t apply the relevant transformations when |z| is close
% to 1 (so as to facilitate reliable convergence)

4

% etc.
%
% Peter S. Fader (http://petefader.com)
% Bruce G.S. Hardie (http://brucehardie.com)
% Ka Lok Lee (http://kaloklee.com)
%
% Last modified 2005-03-16

lenz = length(z);
j = 0;
uj = ones(lenz,1);
y = uj;
lteps = 0;

while (lteps<lenz)
lasty = y;
j = j+1;
uj = uj .*(a+j-1) .*(b+j-1) ./(c+j-1) .*z ./j;
y = y + uj;
lteps = sum(y==lasty);

end

The following function computes the value of the sample log-likelihood
function for a given set of model parameters (contained in the vector param):

function [f,g]=pareto_nbd_ll(param)
% pareto_nbd_ll -- Pareto/NBD model log-likelihood
%
% Computes the log likelihood function for the Pareto/NBD model
%
% Syntax: pareto_nbd_ll(param) where the elements of param are r, alpha, s,
% and beta, respectively.
%
% Peter S. Fader (http://petefader.com)
% Bruce G.S. Hardie (http://brucehardie.com)
% Ka Lok Lee (http://kaloklee.com)
%
% Last modified 2005-03-16

global p1x tx T

r = param(1);
alpha = param(2);
s = param(3);
beta = param(4);

maxab = max(alpha,beta);
absab = abs(alpha-beta);
param2 = s+1;
if alpha < beta

param2 = r+p1x;
end

part1 = (alphaˆr*betaˆs/gamma(r))*gamma(r+p1x);

5

part2 = 1./((alpha+T).ˆ(r+p1x).*(beta+T).ˆs);
if absab == 0

F1=1./((maxab+tx).ˆ(r+s+p1x));
F2=1./((maxab+T).ˆ(r+s+p1x));

else
F1=h2f1(r+s+p1x,param2,r+s+p1x+1,absab./(maxab+tx))./...

((maxab+tx).ˆ(r+s+p1x));
F2=h2f1(r+s+p1x,param2,r+s+p1x+1,absab./(maxab+T))./...

((maxab+T).ˆ(r+s+p1x));
end

f = -sum(log(part1.*(part2+(s./(r+s+p1x)).*(F1-F2))));
[f/1000 param]
g=[];

We use the fmincon routine, which comes as part of MATLAB’s Op-
timization toolbox, to find the values of r, α, s, β that maximize the log-
likelihood function (or more correctly, minimize −LL). The following script
calls the routine:

% estimate_pareto_nbd.m
%
% Script to estimate the Pareto/NBD parameters
% *** requires the Optimization Toolbox ***
% *** assumes the script load_data.m has be run ***
%
% Peter S. Fader (http://petefader.com)
% Bruce G.S. Hardie (http://brucehardie.com)
% Ka Lok Lee (http://kaloklee.com)
%
% Last modified 2005-03-16

lb = .0001 * ones(1,4);
ub = 20 * ones(1,4);

initial = ones(1,4);

[params ll] = fmincon(’pareto_nbd_ll’,initial,[],[],[],[],lb,ub)

In contrast to models such as the NBD and the BG/NBD, we sometimes
experience difficulties in finding the maximum of the log-likelihood function.
Using starting values of r = 1, α = 1, s = 1, β = 1, fmincon terminates at
the following point: r = 0.5532, α = 10.5767, s = 0.6065, β = 11.6806, LL =
−9595.0. However, using starting values of [2, 2, 2, 2], the optimization rou-
tine seems to “hang”. For the moment, the best thing to do is to abort the
optimization routine and restart using an alternative set of starting values.
Trying out different starting values yields the following results:

6

Starting Solution
r α s β r α s β LL
0.5 1.0 0.5 1.0 0.5533 10.5777 0.6062 11.6681 −9595.0
2.0 2.0 2.0 2.0 abort
1.5 1.0 2.0 0.5 0.5532 10.5773 0.6065 11.6771 −9595.0
0.5 0.6 0.2 0.1 abort
0.2 0.5 0.4 0.1 abort
0.1 0.5 0.4 3.0 0.5533 10.5773 0.6064 11.6736 −9595.0

But why is the optimization routine appearing to “hang” for certain sets
of starting values? Let us consider the case of [2, 2, 2, 2]; we find that it is
“hanging” when evaluating the parameter set r = 0.0001, α = 13.9431, s =
0.0001, β = 0.0001. Since α > β, we are evaluating A0 as given in (1).
In our dataset, there are 1411 observations for which tx = 0; for these
observations, the first Gaussian hypergeometric function is being evaluated
at z = (13.9431− 0.0001)/13.9431 = 0.9999928. For such a large value of z,
the series in the h2f1 function is taking a long time to converge. (This is
the price we pay for using such a “crude” routine to evaluate the Gaussian
hypergeometric function.)

The cause of this problem is the small lower bound we have specified for
fmincon. If the lower bound was instead 0.1, α = 13.9431 would map to z =
0.9928 for tx = 0. Changing the lower bound in the estimate pareto nbd.m
script to 0.1 (i.e., lb = .1 ∗ ones(1,4)), we find that the optimization
routine converges quickly for all of the starting values listed above. (If we
change the lower bound for all parameters to 0.01, we find that convergence
is much slower.)

4. Generating a Forecast of Aggregate Repeat Transactions

One way to assess the performance of the Pareto/NBD model is to see how
well the model-based prediction of repeat purchasing by the cohort of 2357
customers tracks the actual number of repeat transactions over time.

For a randomly-chosen customer, the expected number of repeat trans-
actions in a period of length t is given by

E[X(t) | r, α, s, β] =
rβ

α(s − 1)

[
1 −

(
β

β + t

)s−1
]

However, we are not interested in the expected number of repeat transac-
tions for a randomly-chosen individual; rather we are interested in tracking
(and forecasting) the total number of repeat transactions by the cohort of
customers. In computing this cohort-level number, we need to account for
the fact that different customers made their first purchase at CDNOW at
different points in time during the first quarter of 1997, and consequently
differ in the length of the time period during which they could have made re-
peat purchases. Given our recognition that transactions can occur on each

7

day of the week, we need to consider 7 × 12 = 84 different first-purchase
dates.

Assuming that the first time a repeat purchase can occur is on the day
after an individual’s first, or “trial”, purchase, total repeat transactions can
be computed as follows:

Total Repeat Transactions by t =
84∑

s=1

δ(t> s
7)nsE[X(t − s

7)]

where ns is the number of customers who made their first purchase at CD-
NOW on day s of 1997 (and therefore have t − s

7 weeks within which to
make repeat purchases) and δ(t> s

7) = 1 if t > s
7 , 0 otherwise.

To compute the expected number of total repeat transactions for each
of the 39 “calibration period” weeks and each of the following 39 “forecast
period” weeks, we first compute this quantity for each of the 7 × 78 = 546
days and then extract every 7th number to yield the corresponding weekly
numbers. This is implemented in the following script, which also generates
the associated tracking plots. (The actual repeat sales data, against which
the model predictions are compared, are contained the Cum. Repeat Sales
worksheet in the cdnow data.xls workbook.)

% create_tracking_plot.m
%
% Script to compute the repeat sales for the CDNOW dataset and create the
% associated tracking plots (both cumulative and incremental)
%
% Assumes -- the parameter estimates are contained in the vector params
% -- the individual-level customer data are residing in memory
% -- the spreadsheet cdnow_data.xls resides in the d:\ directory
%
% Peter S. Fader (http://petefader.com)
% Bruce G.S. Hardie (http://brucehardie.com)
% Ka Lok Lee (http://kaloklee.com)
%
% Last modified 2005-03-16

r = params(1); alpha = params(2);
s = params(3); beta = params(4);

% determine cohort size by day of trial
ns = [];
for i = 1:84

ns(i) = sum((T == (273-i)/7));
end

% generate sales cumulative forecast
endwk = 78;
endday = endwk*7;

8

tmp1 = r*beta/(alpha*(s-1));
tmpcumsls1 = [];
for i = 1:endday

tmp2 = (beta/(beta+i/7))ˆ(s-1);
tmpcumsls1(i) = tmp1*(1-tmp2);

end

tmpcumsls2 = zeros(84,endday);
for i = 1:84

tmpcumsls2(i,:) = [zeros(1,i) tmpcumsls1(1:endday-i)];
end

cumrptsls = [];
dailysls = ns*tmpcumsls2;
for i = 1:endwk

cumrptsls(i) = dailysls(i*7);
end

% load actual cumulative repeat sales data
actual = xlsread(’d:\cdnow_data’,’Cum. Repeat Sales’,’b1:b78’);

% create tracking plot of cumulative repeat sales (pred. vs actual)
plot(1:endwk,actual,’k’,1:endwk,cumrptsls,’k--’, [39 39],[0 5000],’k--’);
xlabel(’Week’); ylabel(’Cum. Rpt Transactions’);
legend(’Actual’,’Pareto/NBD’,4);
print -depsc ’cumrptsls.eps’

% create tracking plot of weekly repeat sales (pred. vs actual)
incrptsls = [cumrptsls(1) diff(cumrptsls)];
incactual = [actual(1) diff(actual)’];
plot(1:endwk,incactual,’k’,1:endwk,incrptsls,’k--’, [39 39],[0 150],’k--’);
xlabel(’Week’); ylabel(’Weekly Rpt Transactions’);
legend(’Actual’,’Pareto/NBD’,4);
print -depsc ’incrptsls.eps’

Looking at Figure 1, we note that the Pareto/NBD model predictions
accurately track the actual (cumulative) sales trajectory in both the 39-week
calibration period and the 39-week forecast period, under-forecasting by less
than 2% at week 78.

In Figure 2, we report the week-by-week repeat-transaction numbers.
The sales figures rise through week 12, as new customers continue to enter
the cohort, but after that point it is a fixed group of 2357 eligible buy-
ers. We see clearly that the Pareto/NBD model captures the underlying
trend in repeat-buying behavior, albeit with obvious deviations because of
promotional activities and the December holiday season.

5. Computing P(active)

The main result of Schmittlein et al. (1987) is an expression for the prob-
ability that a particular customer is still “active” given information about
his past behavior; this can be written as

9

0 10 20 30 40 50 60 70 80
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Week

C
um

. R
pt

 T
ra

ns
ac

tio
ns

Actual
Pareto/NBD

Figure 1: Tracking Cumulative Repeat Transactions

0 10 20 30 40 50 60 70 80
0

50

100

150

Week

W
ee

kl
y

R
pt

 T
ra

ns
ac

tio
ns

Actual
Pareto/NBD

Figure 2: Tracking Weekly Repeat Transactions

P (active | r, α, s, β, X = x, tx, T)

=
{
1 +

(
s

r + s + x

)
(α + T)r+x(β + T)sA0

}−1

, (3)

where A0 is defined in (1) and (2).
The following script computes this quantity for each customer and cre-

ates a plot (to be discussed below) that helps us assess the quality of these
predictions.

10

% compute_pactive.m
%
% Script to compute P(active|p1x,tx,T) for Pareto/NBD model.
% Also creates a plot comparing average P(active|p1x,tx,T) with the
% observed proportion of customers active in the second period by p1x.
%
% Assumes -- the parameter estimates are contained in the vector params
% -- the individual-level customer data are residing in memory
%
% Peter S. Fader (http://petefader.com)
% Bruce G.S. Hardie (http://brucehardie.com)
% Ka Lok Lee (http://kaloklee.com)
%
% Last modified 2005-03-16

% compute P(active|p1x,tx,T)
r = params(1); alpha = params(2);
s = params(3); beta = params(4);

maxab = max(alpha,beta);
absab = abs(alpha-beta);
param2 = s+1;
if alpha < beta

param2 = r+p1x;
end

F0 = (alpha+T).ˆ(r+p1x).*(beta+T).ˆs;
F1=h2f1(r+s+p1x,param2,r+s+p1x+1,absab./(maxab+tx))./...

((maxab+tx).ˆ(r+s+p1x));
F2=h2f1(r+s+p1x,param2,r+s+p1x+1,absab./(maxab+T))./...

((maxab+T).ˆ(r+s+p1x));
pactive = 1./(1+(s./(r+s+p1x)).*F0 .*(F1-F2));

% compute average P(active|p1x,tx,T) and determine the proportion of
% customers buying in the second 39 weeks for each level of p1x
pa_actual = zeros(max(p1x)+1,1);
pa_est = zeros(max(p1x)+1,1);
np1x = zeros(max(p1x)+1,1);
for y = unique(p1x)’

isx = find(p1x==y);
np1x(y+1) = length(isx);
pa_actual(y+1) = sum(p2x(isx)>0)/np1x(y+1);
pa_est(y+1) = sum(pactive(isx))/np1x(y+1);

end
clear y isx

% create right-censored version for plot
censor = 7; % right-censor at 7+
denom = sum(np1x(censor+1:length(np1x)));

pa_act_cen = pa_actual(1:censor);
pa_act_cen(censor+1) = (np1x(censor+1:length(np1x))’*...

pa_actual(censor+1:length(np1x)))/denom;

11

pa_est_cen = pa_est(1:censor);
pa_est_cen(censor+1) = (np1x(censor+1:length(np1x))’*...

pa_est(censor+1:length(np1x)))/denom;

plot([0:censor],pa_act_cen,’k’,[0:censor],pa_est_cen,’kp--’);
legend(’Empirical’,’Pareto/NBD’,4);
xlabel(’# Transactions in Weeks 1-39’); ylabel(’P(active)’);
axis([-.3 7.3 0 1]);
label = [’ 0’; ’ 1’; ’ 2’; ’ 3’; ’ 4’; ’ 5’; ’ 6’; ’7+’];
set(gca,’xticklabel’,label);
print -depsc ’pactive_grouped.eps’

We assess the quality of these 2357 individual-level probabilities in the
following manner. For each level of repeat purchasing (x) in the first 39
weeks, we compute the average of the individual-level P (active |X = x, tx, T)
numbers. We also compute the proportion of customers who were active (i.e.,
made at least one purchase) in the second 39-week period, for each level of
repeat purchasing (x) in the first 39 weeks. These two sets of numbers are
reported in Figure 3.

 0 1 2 3 4 5 6 7+
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transactions in Weeks 1−39

P
(a

ct
iv

e)

Empirical
Pareto/NBD

Figure 3: Predicted vs. Actual Proportions of Active Customers

The averages of the individual-level P (active |data) numbers should rep-
resent an upper-bound on the proportion of customers who will purchase in
subsequent periods. (Note that this is not a smooth curve as, for each x, we
are averaging over individuals with different values of T and tx.) For most
levels of repeat purchasing in the first 39-week period, the Pareto/NBD
model provides a good estimate of the proportion of active customers.

12

6. Computing Conditional Expectations

Let E(Y (t) |X = x, tx, T) denote the expected number of transactions in the
period (T, T + t] for an individual with observed behavior (X = x, tx, T).
This conditional expectation is given by

E(Y (t) |X = x, tx, T, r, α, a, b)

=
(r + x)(β + T)
(α + T)(s − 1)

[
1 −

(
β + T

β + T + t

)s−1
]

× P (active | r, α, s, β, X = x, tx, T) ,

where the expression for P (active |data) is given in (3).
The following script computes this quantity for each of the 2357 cus-

tomers in our sample, and creates a plot that reports the average of these
numbers, along with the average of the actual number of transactions that
took place in the forecast period, broken down by the number of repeat
purchases in the first 39 weeks.

% compute_ce.m
%
% Script to compute the Pareto/NBD conditional expectations
%
% Assumes -- the parameter estimates are contained in the vector params
% -- the individual-level customer data are residing in memory
% -- pactive (for each customer) resides in memory
%
% Peter S. Fader (http://petefader.com)
% Bruce G.S. Hardie (http://brucehardie.com)
% Ka Lok Lee (http://kaloklee.com)
%
% Last modified 2005-03-16

r = params(1); alpha = params(2);
s = params(3); beta = params(4);

t = 39; % period for which conditional expectations are to be computed
tmp1 = (r+p1x).*(beta+T)./((alpha+T).*(s-1));
tmp2 = ((beta+T)./(beta+T+t)).ˆ(s-1);
ce = tmp1.*(1-tmp2).*pactive;

% compute average E[Y(t)|p1x,tx,T] and average actual number of
% transactions in the second 39 weeks for each level of p1x
ce_act = zeros(max(p1x)+1,1);
ce_est = zeros(max(p1x)+1,1);
np1x = zeros(max(p1x)+1,1);
for y = unique(p1x)’

isx = find(p1x==y);
np1x(y+1) = length(isx);
ce_act(y+1) = sum(p2x(isx))/np1x(y+1);
ce_est(y+1) = sum(ce(isx))/np1x(y+1);

13

end
clear y isx

% create right-censored version for plot
censor = 7; % right-censor at 7+
denom = sum(np1x(censor+1:length(np1x)));

ce_act_cen = ce_act(1:censor);
ce_act_cen(censor+1) = (np1x(censor+1:length(np1x))’...

*ce_act(censor+1:length(np1x)))/denom;

ce_est_cen = ce_est(1:censor);
ce_est_cen(censor+1) = (np1x(censor+1:length(np1x))’...

*ce_est(censor+1:length(np1x)))/denom;

plot([0:censor],ce_act_cen,’k’,[0:censor],ce_est_cen,’kp--’);
legend(’Actual’,’Pareto/NBD’,4);
xlabel(’# Transactions in Weeks 1-39’);
ylabel(’Average # Transactions in Weeks 40-78’);
axis([-.3 7.3 0 7]);
label = [’ 0’; ’ 1’; ’ 2’; ’ 3’; ’ 4’; ’ 5’; ’ 6’; ’7+’];
set(gca,’xticklabel’,label);
print -depsc ’ce_plot.eps’

These conditional expectations are reported in Figure 4. We observe
that the Pareto/NBD model provides excellent predictions of the expected
number of transactions in the 39-week forecast period.

 0 1 2 3 4 5 6 7+
0

1

2

3

4

5

6

7

Transactions in Weeks 1−39

A
ve

ra
ge

 #
 T

ra
ns

ac
tio

ns
 in

 W
ee

ks
 4

0−
78

Actual
Pareto/NBD

Figure 4: Conditional Expectations of Purchasing (Weeks 40–78)

14

References

Fader, Peter S. and Bruce G. S. Hardie (2005), “A Note on Deriving the
Pareto/NBD Model and Related Expressions.”
<http://brucehardie.com/notes/009/>

Fader, Peter S., Bruce G. S. Hardie, and Ka Lok Lee (2005a), “"Counting
Your Customers" the Easy Way: An Alternative to the Pareto/NBD
Model,” Marketing Science, forthcoming.

Fader, Peter S., Bruce G. S. Hardie, and Ka Lok Lee (2005b), “RFM and
CLV: Using Iso-value Curves for Customer Base Analysis,” Journal of
Marketing Research, forthcoming.

Schmittlein, David C., Donald G. Morrison, and Richard Colombo (1987),
“Counting Your Customers: Who Are They and What Will They Do
Next?” Management Science, 33 (January), 1–24.

15

