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1. Introduction

This note describes how to implement the BG/BB model for customer-base
analysis1 using Microsoft Excel.

We first consider how to estimate the model parameters by “coding-up”
the log-likelihood function. Next we show how to create three sets of plots

used to evaluate the performance of the model for any given dataset: the in-
sample model fit plot, the tracking plots, and the conditional expectations
plots. Finally, we consider how to compute the posterior mean of P and

DERT.
The specific steps are outlined in Sections 2–7 below. All these sections

should be read in conjunction with the workbook BGBB 2011-01-20.xlsx.
We strongly encourage interested readers to build the set of worksheets

associated with this model “from scratch” for themselves, using this note
and the Excel workbook as a guide.

This note does not show how to compute all the quantities associated
with the BG/BB model. However, any reader that has worked through this

note should find it easy to code up the associated equations in Excel.

† c© 2011 Peter S. Fader and Bruce G. S. Hardie. This document and the associated
spreadsheet can be found at < http://brucehardie.com/notes/010/ >.

1Fader, Peter S., Bruce G. S. Hardie, and Jen Shang (2010), “Customer-Base Anal-
ysis in a Discrete-Time Noncontractual Setting,” Marketing Science, 29 (November–
December), 1086–1108.
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2. Parameter Estimation

The likelihood function for a randomly chosen customer with purchase his-
tory (x, tx, n) is

L(α,β, γ, δ | x, tx, n) =
B(α + x, β + n − x)

B(α, β)

B(γ, δ + n)

B(γ, δ)

+

n−tx−1
∑

i=0

B(α + x, β + tx − x + i)

B(α, β)

B(γ + 1, δ + tx + i)

B(γ, δ)
. (1)

For a sample of K customers, where customer k’s purchase history is

denoted by (xk, txk
, nk), the sample log-likelihood function is given by

LL(α, β, γ, δ) =

K
∑

k=1

ln
[

L(α, β, γ, δ | xk, txk
, nk)

]

. (2)

When nk = n for all k, as is this case for our empirical example, there is

no need to loop over all the customers as in equation (2) above; we only need
to loop over the J = n(n + 1)/2 + 1 possible recency/frequency patterns,

each containing fj customers:

LL(α, β, γ, δ) =

J
∑

j=1

fj ln
[

L(α, β, γ, δ | xj, txj
, n)

]

, (3)

where xj and txj
are the frequency and recency associated with each unique

pattern. We now consider how to code up equations (1) and (3) in Excel.

• The recency/frequency summary of the annual donation behavior by

the 1995 cohort of first-time supporters (Table 2 in the paper) is given
in the worksheet Table 2 data. We start by making a copy of this

worksheet— let’s call it Parameter Estimation—and inserting seven
rows at the top of the new worksheet.

• The BG/BB model has four parameters: α, β, γ,δ. In order to code

up equations (1) and (3) in the spreadsheet without an error mes-
sage appearing (e.g., #NUM! or #DIV/0!), we need some starting values

for the four parameters. The exact values do not matter— provided
they are within the defined bounds —so we start with 1.0 for all four

parameters. We locate these parameter values in cells B1:B4.

• Looking at equation (1), we see that we will repeatedly use the quan-
tities B(α, β) and B(γ, δ). We therefore compute them separately in

cells E1 and E3 using

=EXP(GAMMALN(B1)+GAMMALN(B2)-GAMMALN(B1+B2))
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and

=EXP(GAMMALN(B3)+GAMMALN(B4)-GAMMALN(B3+B4))

respectively. (With starting values of α = β = γ = δ = 1, both of
these quantities equal 1.)

• The first part of equation (1) does not depend on tx:

B(α + x, β + n − x)

B(α, β)

B(γ, δ + n)

B(γ, δ)
.

For the first recency/frequency pattern, this formula is entered in cell
H9 as

=EXP(GAMMALN($B$1+A9)+GAMMALN($B$2+C9-A9)

-GAMMALN($B$1+$B$2+C9))/$E$1*EXP(GAMMALN($B$3)

+GAMMALN($B$4+C9)-GAMMALN($B$3+$B$4+C9))/$E$3

We copy this expression down to cell H30.

• The next step is to deal with the summation part of equation (1). This
is slightly tricky as performing a looping operation in Excel (in this

case, looping over i) is, at first glance, not easy without resorting to
VBA code. The maximum upper limit of the summation is n−1 when

tx = 0 (for x = 0), which for this example (with n = 6) is 5. In cells
I8:N8 we enter the possible values that i could take on: 0, 1, 2, 3, 4, 5.

In cells I9:N30, we are going to enter an expression for the summand,

B(α + x, β + tx − x + i)

B(α, β)

B(γ + 1, δ + tx + i)

B(γ, δ)
. (4)

However, we do not evaluate this for all values of i; the upper limit
depends on the recency value associated with each recency/frequency

pattern. To determine the upper limit of the summation (n− tx − 1),
we enter =C9-B9-1 in cell G9 and copy this down to cell G30.

We then enter the following expression

=IF(I$8<=$G9,EXP(GAMMALN($B$1+$A9)

+GAMMALN($B$2+$B9-$A9+I$8)

-GAMMALN($B$1+$B$2+$B9+I$8))/$E$1

*EXP(GAMMALN($B$3+1)+GAMMALN($B$4+$B9+I$8)

-GAMMALN($B$3+$B$4+$B9+I$8+1))/$E$3,0)
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in cell I9. This is evaluating equation (4) while i is less than or equal
to (n − tx − 1); if i > n − tx − 1, it returns a value of 0.

We copy this across to cell N9, and then copy this block of cells down
to row 30.

• Having computed all the elements of equation (1), we sum them up by
entering =SUM(H9:N9) in cell F9. This gives us the value of the like-

lihood function L(α, β, γ, δ | x, tx, n) for the recency/frequency combi-
nation in row 9, as evaluated for the values of α, β, γ, δ given in cells

B1:B4. We copy this down to cell F30.

• Finally, we multiply the number of people associated with each of

the 22 recency/frequency patterns by the log of the corresponding
likelihood function value. We enter =D9*LN(F9) in cell E9 and copy

this down to cell C30. The sum of these 22 cells is entered in cell
B6: =SUM(E9:E30). This is the value of the sample log-likelihood

function (equation (3)) given the values of the four model parameters
in cells B1:B4. (With starting values of 1.0 for all four parameters,

LL = −37,232.0.)

We find the maximum likelihood estimates of the four model parameters
by maximizing this log-likelihood function using Solver. With reference to

Figure 1, the target cell is the value of the log-likelihood, cell B6. We wish
to maximize this by changing cells B1:B4. The constraints we place on

the parameters are that α, β, γ, and δ are greater than 0. As Solver only
offers us a “greater than or equal to” constraint, we add the constraint that

cells B1:B4 are ≥ a small positive number (e.g., 0.0001). Clicking the Solve

button, Solver finds the values of the four model parameters that maximize

the log-likelihood function.

Figure 1: Solver Settings

Can we be sure that we have actually reached the maximum of the log-

likelihood function? Using the solution given by Solver as the set of starting
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values for the parameters, we “fire up” Solver again to see if it can improve
on this solution. Once we are satisfied that the maximum has indeed been

reached, we can say that the numbers given in cells B1:B4 are the maximum
likelihood estimates of the model parameters. As reported in Table 4 in

the paper, the maximum value of the log-likelihood function is −33,225.6,
associated with α = 1.204, β = 0.750, γ = 0.657, δ = 2.783.

So as to be more confident that we have reached the global maximum
of the likelihood function, it is good practice to redo the optimization pro-

cess using a completely different set of starting values. For example, using
starting values of 0.01, 0.01, 0.01, 0.01 for cells B1:B4, repeatedly use Solver

until you are satisfied that the maximum of the log-likelihood function has
been reached. Are the corresponding values of the four model parameters
equal to those given above? They should be.

In some empirical settings, we have found that Solver returns #DIV/0!

as the value of the log-likelihood function, with γ and δ taking on “large”

values (in the order of hundreds or thousands). See the Appendix for a
discussion of this problem and possible solutions.

3. Creating an In-Sample Model Fit Plot

One way of assessing in-sample model fit is to compare the expected number
of people making 0, 1, . . . , 6 repeat transactions in the calibration sample

period to the actual frequency distribution—as done in Figure 3 in the pa-
per. The expected frequencies are computed using the following expression

for the BG/BB pmf:

P (X(n) = x |α, β,γ, δ) =

(

n

x

)

B(α + x, β + n − x)

B(α, β)

B(γ, δ + n)

B(γ, δ)

+

n−1
∑

i=x

(

i

x

)

B(α + x, β + i − x)

B(α, β)

B(γ + 1, δ + i)

B(γ, δ)
. (5)

Using logic very similar to that used for coding up the model likeli-
hood function, equation (5) is coded up in cells A8:I15 of the worksheet

In-Sample Fit. (We leave it to the reader to reverse-engineer the exact
logic.)

The expected number of people with frequency x in a sample of K cus-
tomers is simply K×P (X(n) = x). This is computed in cells C18:C24. The
actual frequency distribution (cells B18:B24) is determined by performing a

pivot-table analysis on the data given in the worksheet Table 2 data, and
is compared to the expected frequency distribution in the associated plot.

(This is a replication of Figure 3 in the paper.)
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4. Creating Tracking Plots

Another way to assess the performance of the model is to see how well it
tracks repeat transactions over time. For a randomly chosen customer, the

expected (cumulative) number of repeat transactions across n transaction
opportunities is given by

E(X(n) |α, β, γ, δ)

=

(

α

α + β

)(

δ

γ − 1

){

1 −
Γ(γ + δ)

Γ(γ + δ + n)

Γ(1 + δ + n)

Γ(1 + δ)

}

. (6)

It follows that the expected number of repeat transactions from a sample of

K customers across transaction opportunities 1, . . . , n is K × E[X(n)].
With reference to the worksheet Tracking Plots, we start by evaluating

equation (6) for n = 1 (1996), 2 (1997), . . . , 11 (2006) in cells A7:F17. (The
three terms of equation (6) are computed in cells D7:F17, with the prod-

uct of these three terms (i.e., E[X(n)]) computed in cells B7:B17.) Given
these numbers, we compute the expected number of (cumulative) repeat
transactions made by the cohort of 11,104 people from 1996 up to 2006 in

cells J7:J17. The corresponding actual numbers, as computed from the raw
dataset (not presented in the workbook), are given in cells I7:I17. These

data are plotted as both a line chart and a bar chart; the line chart is a
replication of Figure 4a in the paper. Taking differences gives us the annual

repeat sales numbers (cells L7:M17), which are plotted as both a line chart
and a bar chart; the line chart is a replication of Figure 4b in the paper.

5. Computing Conditional Expectations

As noted in the paper, a key examination of the predictive performance
of the model focuses on the quality of the predictions of future behavior

conditional on past behavior.
The expected number of future transactions across the next n∗ trans-

action opportunities by a customer with purchase history (x, tx, n)— the
so-called conditional expectation —is

E(X(n, n + n∗) |α, β, γ, δ, x, tx, n)

=
1

L(α, β, γ, δ | x, tx, n)

B(α + x + 1, β + n − x)

B(α, β)

×

(

δ

γ − 1

)

Γ(γ + δ)

Γ(1 + δ)

{

Γ(1 + δ + n)

Γ(γ + δ + n)
−

Γ(1 + δ + n + n∗)

Γ(γ + δ + n + n∗)

}

. (7)

This is very easy to evaluate as we have already created expressions

for B(α, β) and L(α, β, γ, δ | x, tx, n) as part of the parameter estimation
process, and the last line is the same for all recency/frequency combinations
(i.e., it is independent of x and tx).
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• We first make a copy of the worksheet Parameter Estimation (let’s
call it Conditional Expectations (I)), insert two columns to the

right of column F, and two rows after row 4.

• We need to specify n∗, the horizon over which we are computing the

conditional expectations. For this example, we will compute the ex-
pected number of transactions in 2002–2006, so we enter a value of
n∗ = 5 in cell B6.

• We compute the third line of equation (7) in cell E6, and compute the
quantity B(α+x+1, β +n−x)/B(α, β) in cells H11:H32. Combining

terms in cells G11:G32 gives us the expected number of transactions in
2002–2002 for each of the 22 recency/frequency combinations. These

are the numbers reported in Table 5 in the paper.

Figure 6 in the paper plots the predicted versus actual conditional ex-
pectations of repeat transactions in 2002–2006 as a function of (a) frequency

and (b) recency. These plots are created in the following manner.

• We insert a new worksheet which we call Conditional Expectations

(II). For each of the 22 recency/frequency combinations, we copy
over the associated number of customers and the computed condi-

tional expectation number. In cells F2:F23 we compute the expected
total amount of purchasing in 2002–2006 by the customers associated

with each recency/frequency combination. The corresponding actual
numbers, as computed from the raw dataset (not presented in the
workbook), are given in cells G2:G23.

• Next we create a pivot table of the “actual total” numbers by frequency
and recency, summarizing the data using the “Sum” calculation type

(see Pivot Table I), a pivot table “summing” these “expected total”
numbers by frequency and recency (see Pivot Table II) and a pivot

table “summing” the “# donors” numbers by frequency and recency
(see Pivot Table III). These three sets of numbers are copied back
to Conditional Expectations (II).

• The plot of predicted versus actual conditional expectations of repeat
transactions in 2002–2006 as a function of frequency averages the con-

ditional expectation numbers over customers with different values of
tx for each x. This is a weighted average, where the weights are the
number of customers associated with each value of tx. This is equiv-

alent to dividing the row totals of the predicted and actual purchases
by the number of people in each row—see cells U3:V9. The associated

line chart is a replication of Figure 6a in the paper.

• Similarly, the plot of predicted versus actual conditional expectations

of repeat transactions in 2002–2006 as a function of recency averages
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the conditional expectation numbers over customers with different val-
ues of x for each tx. This is a weighted average, where the weights

are the number of customers associated with each value of x. This is
equivalent to dividing the column totals of the predicted and actual

purchases by the number of people in each column—see cells U13:V19.
The associated line chart is a replication of Figure 6b in the paper.

6. Computing the Posterior Mean of P

For l, m = 0, 1, 2, . . ., the (l, m)th product moment of the joint posterior
distribution of P and Θ is

E(P lΘm |α, β, γ, δ, x, tx, n)

=
B(α + l, β)

B(α, β)

B(γ + m, δ)

B(γ, δ)

L(α + l, β, γ + m, δ | x, tx, n)

L(α, β, γ, δ | x, tx, n)
, (8)

where L(α + l, β, γ + m, δ | x, tx, n) is simply equation (1) evaluated using
α + l in place of α and γ + m in place of γ.

• We start by making a copy of the worksheet Parameter Estimation

(let’s call it E(P^l,Theta^m)). We delete the contents of cells A6:B6

and E9:E30, and insert one row after row 4.

• We are interested in computing the mean of the marginal posterior

distribution of P ; we therefore enter the value of l = 1 in cell B6 and
m = 0 in cell B7. (If we want to compute other product moments
of the joint posterior distribution of P and Θ, we simply change the

numbers in cells B6:B7.)

• We need to compute L(α + l, β, γ + m, δ | x, tx, n), which is simply

the model likelihood function evaluated using α + l in place of α and
γ + m in place of γ. We also need to compute B(α, β) and B(γ, δ).

We copy the original parameter estimates to cells H1:H4 and enter the
expressions for B(α, β) and B(γ, δ) in cells K1 and K3, respectively. We
enter =H1+B6 in cell B1 (giving us α + l) and =H3+B7 in cell B3 (giving

us γ + m). Cells F10:F31 now contain L(α + l, β, γ + m, δ | x, tx, n).

• Finally we enter

=$E$1/$K$1*$E$3/$K$3*F10/’Parameter Estimation’!F9

in cell E10, which evaluates equation (8), and copy it down to cell E31.

This gives us the mean of the marginal posterior distribution of P for each
of the 22 recency/frequency combinations. These are the numbers reported

in Table 7 in the paper.
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7. Computing DERT

The number of discounted expected residual transactions (DERT ) is the
present value of the expected future transaction stream for a customer with

purchase history (x, tx, n). The formula for this quantity under the BG/BB
model for a specified discount rate d is

DERT (d |α, β, γ, δ, x , tx, n)

=
B(α + x + 1, β + n − x)

B(α, β)

B(γ, δ + n + 1)

B(γ, δ)(1 + d)

×
2F1

(

1, δ + n + 1; γ + δ + n + 1; 1

1+d

)

L(α, β, γ, δ | x, tx, n)
, (9)

where 2F1(·) is the Gaussian hypergeometric function. (While the presence
of the Gaussian hypergeometric function complicates the evaluation of this

formula, it is worth emphasizing that the function only needs to be evaluated
once for any given value of n (i.e., only once per cohort, not for every

recency/frequency pattern).)
The Gaussian hypergeometric function is the power series of the form

2F1(a, b; c; z) =

∞
∑

j=0

(a)j(b)j

(c)j

zj

j!
, c 6= 0,−1,−2, . . . ,

where (a)j is Pochhammer’s symbol, which denotes the ascending factorial

a(a+1) · · · (a+ j−1). (Note that an ascending factorial can be represented
as the ratio of two gamma functions, (a)j = Γ(a + j)/Γ(a).) The series

converges for |z| < 1 and is divergent for |z| > 1; if |z| = 1, the series
converges for c − a − b > 0.

Writing

2F1(a, b; c; z) =
∞
∑

j=0

uj , where uj =
(a)j(b)j

(c)j

zj

j!
,

we have the following recursive expression for each term of the series:

uj

uj−1

=
(a + j − 1)(b + j − 1)

(c + j − 1)j
z , j = 1, 2, 3, . . .

where u0 = 1. This lends itself to a simple (and relatively robust) numerical

method for the evaluation of the Gaussian hypergeometric function: con-
tinue adding terms to the series until uj is less than “machine epsilon” (the

smallest number that a specific computer recognizes as being bigger than
zero). However, when “hard-coding” this in a worksheet (as opposed to, say,

creating a custom function using VBA), it is easier to compute the series to
a fixed number of terms; in this case, we will evaluate the first 151 terms

(i.e., j = 0, 1, . . . , 150).
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• We start by making a copy of the worksheet Parameter Estimation

(let’s call it DERT), and insert one column to the right of column F,

and two rows after row 4.

• We then need to specify the discount rate d. For this example, we will

assume an annual rate of 10%, so we enter a value of 0.1 in cell B6.

• Next we evaluate the Gaussian hypergeometric function. The ‘a’ pa-

rameter is simply 1, which we enter in cell D36. The ‘b’ parameter
is δ + n + 1, entered as =B4+C11+1 in cell D37. The ‘c’ parameter is

γ + δ +n+1, so we enter as =B3+B4+C11+1 in cell D38. Finally, the ‘z’
argument of the function is 1/(1 + d), which is entered as =1/(1+B6)

in cell D39.

Starting at cell F35, we compute each term of the series for j =

0, . . . , 150. (The values of the index j are given in cells E35:E185.)
As noted above, the value of u0 is 1 (cell F35). To compute the value

of u1, we multiply u0 by

(a + j − 1)(b + j − 1)

(c + j − 1)j
z

evaluated at j = 1. We therefore compute u1 by entering

=F35*($D$36+E36-1)*($D$37+E36-1)

$D$39/(($D$38+E36-1)*E36)

in cell F36. We copy this formula down to cell F185, which corresponds
to u150. Summing these 151 terms gives us the numerical value of the

Gaussian hypergeometric function for this set of function parameters
(cell D35).2

• Finally we enter

=EXP(GAMMALN($B$1+A11+1)+GAMMALN($B$2+C11-A11)

-GAMMALN($B$1+$B$2+C11+1))*EXP(GAMMALN($B$3)

+GAMMALN($B$4+C11+1)-GAMMALN($B$3+$B$4+C11+1))/

($E$1*$E$3*(1+$B$6))*$D$35/F11

in cell G11, which evaluates equation (9), and copy it down to cell G32.

This gives us the present value of the expected number of future transactions

for each of the 22 recency/frequency combinations. (These numbers are not
reported in the paper.)

2In some settings, we may find that the value of u150 is not approaching zero. This
means we need to add more terms to the series: we simply add values of the index j below
cell E185, copy down cell F185, and make the required changes to the formula in cell D35.
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Appendix: Potential Estimation Problem

When Solver returns #DIV/0! as the value of the log-likelihood function with
γ and δ taking on “large” values (in the order of hundreds or thousands),

the large values of γ and δ mean that B(γ, δ) takes on a value of zero (which
causes the error when we compute the model likelihood function). These

large values for γ and δ mean that the beta distribution for θ is effectively
a spike at E(Θ) = γ/(γ + δ); that is, there is no heterogeneity in θ.

While we could reformulate the underlying model — removing the beta
heterogeneity associated with the geometric distribution, giving us the G/BB
(geometric/beta-Bernoulli) model— it is easier to place a constraint on the

potential magnitude of γ and δ. Instead of constraining γ and/or δ directly,
we place a constraint on γ + δ; a limit of 1000 should suffice. To implement

this, we enter =B3+B4 in cell B5, Add $B$5 <= 1000 to the existing Solver
constraint ($B$1:$B$4 >= 0.0001) and click the Solve button.
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