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1 Introduction

The Pareto/NBD model (Schmittlein et al. 1987) is a benchmark model for
customer-base analysis in a noncontractual setting. The formulation of the

model likelihood function developed by Fader and Hardie (2005) assumes we
know when each of a customer’s x transactions occurred during the period

(0, T ], although it turns out that we only need to know the exact time of
the last transaction (denoted by tx).

In some model application settings, the data reporting procedures are
such that we do not know when each of a customer’s x transactions oc-

curred, and therefore tx is unknown. Rather, we know how many transac-
tion occurred in each of a series of discrete time-intervals. For example, the
following transaction history

-

Period 1
× ×

Period 2 Period 3
× ××

Period 4

would be recorded as two transactions occurring in Period 1, no transactions
in Period 2, three transactions in Period 3, and no transactions in Period 4.

We know that the last observed transaction (the fifth purchase) occurred
in Period 3 but we do not know the exact time of this purchase (t5). As a
result, we cannot use the expression for the Pareto/NBD likelihood function

given in Fader and Hardie (2005).

† c© 2005, 2010 Peter S. Fader and Bruce G. S. Hardie. This document can be found at

<http://brucehardie.com/notes/011/>.
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When the transaction history is reported in terms of the transaction
counts for each of a series of discrete time-intervals, we say that the data

are interval censored. The purpose of this note is to derive the Pareto/NBD
likelihood function for the case of interval-censored data.

2 Model Assumptions

Before deriving the model likelihood function for the case of interval-censored
data, let us review the underlying assumptions of the Pareto/NBD model
and the key results for the “full information” case.

The Pareto/NBD model is based on the following assumptions:

i. Customers go through two stages in their “lifetime” with a specific
firm: they are “alive” for some period of time, then become perma-

nently “inactive”.

ii. While alive, the number of transactions made by a customer follows a

Poisson process with transaction rate λ. This is equivalent to assuming
that the time between transactions is distributed exponential with
transaction rate λ,

f(tj | λ, tj−1) = λe−λ(tj−tj−1) , tj > tj−1 > 0 ,

where tj is the time of the jth purchase.

iii. A customer’s unobserved “lifetime” of length τ (after which he is
viewed as being inactive) is exponentially distributed with dropout

rate µ:
f(τ | µ) = µe−µτ .

iv. Heterogeneity in transaction rates across customers follows a gamma
distribution with shape parameter r and scale parameter α.

v. Heterogeneity in dropout rates across customers follows a gamma dis-
tribution with shape parameter s and scale parameter β.

vi. The transaction rate λ and the dropout rate µ vary independently
across customers.

For a customer with transaction history (x, tx, T ) (i.e., the individual
made x purchases in the time interval (0, T ] with the last transaction occur-

ring at tx), the individual-level likelihood function is

L(λ, µ | x, tx, T ) =
λxµ

λ + µ
e−(λ+µ)tx +

λx+1

λ + µ
e−(λ+µ)T . (1)

Taking the expectation of this over the distributions of λ and µ yields
the following expressions for the likelihood function for a randomly-chosen

individual with transaction history (x, tx, T ):
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• For α ≥ β,

L(r, α, s, β | x, tx, T ) =
Γ(r + x)αrβs

Γ(r)

×

{ (

s

r + s + x

)

2F1

(

r + s + x, s + 1; r + s + x + 1; α−β
α+tx

)

(α + tx)r+s+x

+

(

r + x

r + s + x

)

2F1

(

r + s + x, s; r + s + x + 1; α−β
α+T

)

(α + T )r+s+x

}

. (2)

• For α ≤ β,

L(r, α, s, β | x, tx, T ) =
Γ(r + x)αrβs

Γ(r)

×

{(

s

r + s + x

)

2F1

(

r + s + x, r + x; r + s + x + 1; β−α
β+tx

)

(β + tx)r+s+x

+

(

r + x

r + s + x

)

2F1

(

r + s + x, r + x + 1; r + s + x + 1; β−α
β+T

)

(β + T )r+s+x

}

. (3)

The probability that a customer with purchase history (x, tx, T ) is alive

at time T is given by

P (alive | r, α, s, β, x, tx, T )

=
Γ(r + x)αrβs

Γ(r)(α + T )r+x(β + T )s

/

L(r, α, s, β | x, tx, T ) . (4)

The random variable Y (t) denotes the number of purchases made in the

period (T, T + t]. The expected number of purchases in the period (T, T + t]
for a customer with purchase history (x, tx, T ), the so-called conditional

expectation, is given by

E[Y (t) | r,α, s, β, x, tx, T ] =
Γ(r + x + 1)

Γ(r)(s − 1)

αrβs

(α + t)r+x+1

×

[

1

(β + T )s−1
−

1

(β + T + t)s−1

]

/

L(r, α, s, β | x, tx, T ) . (5)

3 Derivation of the Likelihood Function

We observe an individual for n discrete time-periods.

• Let si be the length of the ith time period (i = 1, . . . , n) and xi the
number of transactions observed in this period.
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• Let

yj =

j
∑

i=1

xi and Tj =

j
∑

i=1

si .

That is, yn is the total number of transactions made by the individual
in the time interval (0, Tn], which is divided into n discrete periods:

(0, T1], (T1, T2], . . . , (Tn−1, Tn]

We typically observe si = sj ∀ i, j. However, if the recording periods

are months (as opposed to quad weeks), si 6= sj for some i, j.

• Let m (≤ n) be the last period in which at least one purchase took

place. If no purchases are observed in (0, Tn], m = 0; therefore 0 ≤
m ≤ n.

As we seek to derive a general expression for the model likelihood func-
tion, let us consider the following three cases:

Case 1: yn = 0

Suppose no purchases are observed in the time interval (0, Tn] (i.e., yn = 0).
Assuming that the customer was alive at the start of the observation period,

there are two ways this could have occurred:

i. The customer is still alive at the end of the observation period (i.e.,

τ > Tn), in which case the individual-level likelihood function is simply
the exponential survivor function evaluated at Tn:

L(λ | yn = 0, τ > Tn) = e−λTn .

ii. The customer became inactive at some (unobserved) time τ in the

interval (0, Tn], in which case the individual-level likelihood function
is

L(λ | yn = 0, inactive at τ ∈ (0, Tn]) = e−λτ .

Removing the conditioning on τ yields the following expression for the

individual-level likelihood function:

L(λ, µ | yn = 0, Tn) = L(λ | yn = 0, τ > Tn)P (τ > Tn | µ)

+

∫ Tn

0
L(λ | yn = 0, inactive at τ ∈ (0, Tn])f(τ | µ) dτ

= e−λTne−µTn +

∫ Tn

0

e−λτµe−µτ dτ

=
µ

λ + µ
+

λ

λ + µ
e−(λ+µ)Tn . (6)
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Case 2: m = n

Suppose we observe at least one transaction in the last discrete observation
period (which implies m = n). The fact that xn > 0 means that the cus-

tomer must have been alive in the first n − 1 periods. The likelihood of the
corresponding yn−1 transactions in the interval (0, Tn−1] is λyn−1e−(λ+µ)Tn−1 .

There are two ways by which we could observe xn purchases in the
interval (Tn−1, Tn]:

i. The customer is still active at the end of the observation period (i.e.,
τ > Tn), in which case the nth period’s contribution to the individual-

level likelihood function is λxne−λ(Tn−Tn−1).

ii. The customer became inactive at some (unobserved) time τ in the in-
terval (Tn−1, Tn], in which case the individual-level likelihood function

is λxne−λ(τ−Tn−1).

Removing the conditioning on τ yields the following expression for the

individual-level likelihood function:

L(λ, µ | yn, Tn) = λyn−1e−(λ+µ)Tn−1 ·

{

λxne−(λ+µ)(Tn−Tn−1)

+

∫ Tn

Tn−1

λxne−λ(τ−Tn−1)µe−µ(τ−Tn−1) dτ

}

= λyn−1e−(λ+µ)Tn−1 ·
{

λxne−(λ+µ)(Tn−Tn−1)

+
λxnµ

λ + µ

[

1 − e−(λ+µ)(Tn−Tn−1)
]}

=
λynµ

λ + µ
e−(λ+µ)Tn−1 +

λyn+1

λ + µ
e−(λ+µ)Tn . (7)

Case 3: 0 < m < n

Finally, suppose the last observed transaction occurs before the nth period,

sometime in period m. The fact that xm > 0 means that the customer must
have been alive in the first m−1 periods. The likelihood of the correspond-

ing ym−1 transactions in the interval (0, Tm−1] is λym−1e−(λ+µ)Tm−1 . (By
definition, y0 = 0 and T0 = 0.)

There are three ways by which the customer could have made xm pur-
chases in period m and then no purchases in the remaining n − m periods

(i.e., in the interval (Tm, Tn]):

i. The customer became inactive sometime in the mth period, in which

case the incremental “contribution” to the likelihood function is
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A1 =

∫ Tm

Tm−1

λxme−λ(τ−Tm−1)µe−µ(τ−Tm−1) dτ

=
λxmµ

λ + µ

[

1 − e−(λ+µ)(Tm−Tm−1)
]

.

ii. The customer was alive all through the mth period but became inac-

tive sometime in the interval (Tm, Tn], in which case the incremental
“contribution” to the likelihood function is

A2 = λxme−(λ+µ)(Tm−Tm−1)

∫ Tn

Tm

e−λ(τ−Tm)µe−µ(τ−Tm) dτ

=
λxmµ

λ + µ
e−(λ+µ)(Tm−Tm−1)

[

1 − e−(λ+µ)(Tn−Tm)
]

.

iii. The customer was alive all through the mth period and remained alive

all through the interval (Tm, Tn] making no additional purchases, in
which case the incremental “contribution” to the likelihood function

is
A3 = λxme−(λ+µ)(Tn−Tm−1) .

Combining these three terms, we have

L(λ, µ | ym, Tn) = λym−1e−(λ+µ)Tm−1 ·
(

A1 + A2 + A3

)

=
λymµ

λ + µ
e−(λ+µ)Tm−1 +

λym+1

λ + µ
e−(λ+µ)Tn . (8)

In order to create a general expression that encompasses (6)–(8), let us

summarize the customer’s transaction history as (x, Tm−1, T ) where x =
∑n

i=1 xi is the number of transactions that occurred in the interval (0, T ],

where T =
∑n

i=1 si (= Tn), and Tm−1 is the endpoint of the interval imme-

diately preceding that in which the last purchase occurred. (By definition,

T0 = 0; if x = 0, then Tm−1 = 0.) We can therefore write the individual-level
likelihood function as

L(λ, µ | x, Tm−1, T ) =
λxµ

λ + µ
e−(λ+µ)Tm−1 +

λx+1

λ + µ
e−(λ+µ)T . (9)

Note that the only difference between (9) and (1), the

“full information” likelihood function, is that we use

Tm−1 in the place of tx.

It follows that the interval-censored likelihood function for a randomly-
chosen individual with transaction history (x, Tm−1, T ) has the following

form:
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• if α ≥ β,

L(r, α, s, β | x, Tm−1, T ) =
Γ(r + x)αrβs

Γ(r)

×

{(

s

r + s + x

)

2F1

(

r + s + x, s + 1; r + s + x + 1; α−β

α+Tm−1

)

(α + Tm−1)r+s+x

+

(

r + x

r + s + x

)

2F1

(

r + s + x, s; r + s + x + 1; α−β
α+T

)

(α + T )r+s+x

}

. (10)

• if α ≤ β,

L(r, α, s, β | x, Tm−1, T ) =
Γ(r + x)αrβs

Γ(r)

×

{(

s

r + s + x

)

2F1

(

r + s + x, r + x; r + s + x + 1; β−α

β+Tm−1

)

(β + Tm−1)r+s+x

+

(

r + x

r + s + x

)

2F1

(

r + s + x, r + x + 1; r + s + x + 1; β−α

β+T

)

(β + T )r+s+x

}

. (11)

Given the minor change in the expression for the model likelihood func-

tion, it follows that the probability that a customer with purchase history
(x, Tm−1, T ) is alive at time T is given by

P (alive | r, α, s, β, x, Tm−1, T )

=
Γ(r + x)αrβs

Γ(r)(α + T )r+x(β + T )s

/

L(r, α, s, β | x, Tm−1, T ) , (12)

and the conditional expectation is given by

E[Y (t) | r, α, s, β, x, Tm−1, T ] =
Γ(r + x + 1)

Γ(r)(s − 1)

αrβs

(α + t)r+x+1

×

[

1

(β + T )s−1
−

1

(β + T + t)s−1

]

/

L(r, α, s, β | x, Tm−1, T ) . (13)
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