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Summary

Kumar and Reinartz (2006) suggest that future retention rates for a cohort
of customers can be forecast as a function of time using the formula r, =
Too (1 — exp(—)\t)). Our analysis suggests this is not a good idea; we believe
that any attempt to take a series of past retention numbers (for a given group
of customers) and project them into the future should be based off a formal
model of contract duration, such as the shifted-beta-geometric distribution
proposed by Fader and Hardie (2007).

Analysis

1. The task of taking a series of past retention numbers (for a given group
of customers) and projecting them into the future is an important
component of any effort to make predictions about customer tenure,
lifetime value, and so on in a contractual setting.

2. Berry and Linoff (2004) tackle the problem by fitting flexible functions
of time to the survival data, which are then used to project the sur-
vivor function beyond the range of observations. The bad forecasts
lead Berry and Linoff to conclude that “parametric approaches do not
work” when seeking to project the survivor function beyond the range
of observations.

3. Fader and Hardie (2007), hereafter FH, feel that such a conclusion is
premature and propose that the shifted-beta-geometric (sBG) distri-
bution be used as a model of customer contract duration in a discrete-
time contractual setting. They demonstrate that it can provide accu-
rate forecasts and other useful diagnostics about customer retention.

f© 2007 Peter S. Fader and Bruce G.S. Hardie. This document can be found at
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4. If our interest lies in projecting retention rates rather than the survivor
function, why obtain the estimates of future retention rates indirectly
from the projected survivor function? Why not model retention rates
directly, fitting a flexible function of time to the observed retention
rates and using the resulting formula to generate retention rate esti-
mates for future periods?

5. Such an approach is proposed by Kumar and Reinartz (2006, p. 100),
hereafter KR, who suggest we model retention rates using the function

T = roo(l — exp(—)\t)) , (1)

where 74 is the retention rate for period ¢, ro is the retention rate
ceiling, and )\ determines how quickly retention rates converge over
time to the retention ceiling.

6. While such an approach seems very plausible, does it work practice?

7. The retention rate numbers presented in Table 1 are for two seg-
ments of customers (“Regular” and “High End”) for an unspecified
subscription-type business. (These retention rates are computed from
the survival data give in FH, Table 1.)

Year Regular High End
1 0.631 0.869

2 0.742 0.855
3 0.816 0.879
4 0.853 0.908
5) 0.887 0.929
6 0.907 0.938
7 0.920 0.950
8 0.925 0.953
9 0.928 0.951
10 0.937 0.960
11 0.943 0.958
12 0.945 0.963

Table 1: Observed retention rates for years 1-12.

8. Suppose we only have the first seven years of data and wish to compute
estimates of rg, 79, .... We will fit (1) to the data and use the resulting
equation to project the retention rates into the future.

9. Since (1) is a nonlinear function of time, we obtain estimates of the
two model parameters via nonlinear least squares (NLS), which sees



us finding the values of ro, and A that minimize the sum of squared
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SSE =) "(Actual r; — Model r¢)? . (2)
t=1

10. This is easy to do in Excel. Figure 1 shows we “code up” (1) and (2)
for the “Regular” segment dataset.

A | B | ¢ | D
1 |r_infinity 0.885 -
2 |lambda 1002 [ZSUMDED12)
| 3 |SSE 7.25E-03 =(B6-CB)"2
4
[ 5] Model  Actual| \ (M-A)A2
[ 6] 1 0.588 0.631 1.84E-03
7 2 /0785 0.742 1.88E-03
i|:$B$1*(1-EXP(-$B$2*A6))B-816 1.26E-03
1 9 | 7 UB7H .853 4.29E-04
[10] 5 0.881 0.887 3.41E-05
[11] 6  0.884 0.907 5.45E-04
[12] 7 0884 0.920 1.26E-03
[13] 8 0885 0.925
[14] 9 0885 0.928
[15] 10 0.885 0.937
16| 1 0.885 0.943
17 12 0.885 0.945

Figure 1: Estimating the “Regular” segment model parameters using NLS.

We find the NLS estimates of the two model parameters by using the
Solver add-in to find the values of 7o, and A (cells B1:B2) that minimize
SSE (cell B3).

11. This is replicated for the “High End” segment data in Table 2.

A | B | ¢ [ D
| 1 [r_infinity 0.911
| 2 |lambda 2.940
| 3]SSE 6.49E-03
4
[ 5] Model|  Actual (M-Ay2
| 6] 1 0.863 0.869 3.54E-05
| 7] 2 0.909 0.855 2.88E-03
[ 8] 3 0.911 0.879 1.03E-03
[ 9] 4 0.911 0.908 1.05E-05
[10] 5 0.911 0.929 3.15E-04
[11] 6 0.911 0.938 7.16E-04
[12] 7 0.911 0.950 1.50E-03
[13] 8 0.911 0.953
[ 14] 9 0.911 0.951
15| 10 0.911 0.960
[16] 11 0.911 0.958
17 12 0.911 0.963

Figure 2: Estimating the “High End” segment model parameters using NLS.



12. The model-based retention rate numbers are plotted in Figure 3, along
with the corresponding actual retention rates. Clearly the model is not
working! For both datasets, it fails to track and predict the retention
rates. We note that its forecasts for r; level-off too early, to the extent
that it is under-forecasting by the end of the model calibration period.
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Figure 3: Actual versus model estimates of retention rates by tenure for the
High End and Regular segments.

13. In contrast, consider the projections associated with the sBG model
(Figure 4). No comment is required!
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Figure 4: Actual versus sBG estimates of retention rates by tenure for the
High End and Regular segments.

14. Central to KR’s examination of (1) is their Exhibit 5-3, a copy of
which is presented in Figure 5.
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Figure 5: Exhibit 5-3 (KR, p. 100)

This shows the actual retention rates numbers (white bars) for a credit
card company over a period of twenty quarters. The black bars show
the estimates of the retention rates for periods 11-20 for ro, = 0.95
and A = 0.20. (Both sets of retention rate numbers are expressed as
percentages.) KR conclude that “[i]t can be seen that the method to
approzimate the actual retention rates was very close.”

How do we reconcile the conflicting conclusions regarding model per-
formance as indicated by Figures 3 and 57

Looking closely at Figure 5, we see that there are no estimates (black
bars) for the first ten periods. Figure 6 replicates this figure, adding
in the estimates of r1,79,...,710. (We obtain the actual numbers by
using a ruler to measure them off a photo-enlarged copy of the graph.)
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Figure 6: Exhibit 5-3 with retention rate estimates for the first ten periods.



17. Clearly the parameter values ro, = 0.95 and A = 0.20 were not es-
timated from, say, the first ten periods of data. (Let’s just say that
Figure 5 is potentially misleading.)

18. Using NLS, we fit (1) to the first ten periods of data (Figure 7) and
examine the how well the model tracks the period-by-period retention
numbers (Figure 8).

A | B | ¢ ] b
| 1 [r_infinity 0.757
| 2 |lambda 0.577
| 3 |sSE 0.0375
| 4|
| 5] Model|  Actual (M-Ay2
| 6| 1 0.3317  0.4664 0.0181
| 7] 2 05181 05186  0.0000
| 8| 3 06228 05447  0.0061
IER 4 06816  0.6300  0.0027
[ 10] 5 07146  0.6704  0.0020
11 6 07332 06870  0.0021
7 07436 07557  0.0001
8 07495 07676  0.0003
9 07528 07984  0.0021

10 0.7546 0.8174 0.0039
11 0.7556 0.8387
12 0.7562 0.8601
13 0.7566 0.8696
14 0.7567 0.8909
15 0.7568 0.8980
16 0.7569 0.8980
17 0.7569 0.9099
18 0.7570 0.9194
19 0.7570 0.9194
20 0.7570 0.9265
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Figure 7: Fitting (1) to the KR data using NLS.
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Figure 8: Actual versus model estimates of retention rates for the KR data.
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Once again, we see that model fails to track and predict the retention
rates. We note that its forecasts for r; level-off too early, to the extent
that it is under-forecasting by the end of the model calibration period.

Based on the results presented in Figures 3 and 8, we conclude that
(1) should not be used as a model of retention rates.

But is the sBG model any better for this dataset?

FH derive the following expression for the period t retention rate as
implied by the sBG model:

Btt—1

atBti-1 (3)

ry =
Using NLS, we fit (3) to the first ten periods of data (Figure 9) and
examine the how well the model tracks the period-by-period retention
numbers (Figure 10).

A | B | ¢ [ D
| 1 [alpha 3.010
| 2 [beta 2.346
| 3]ssE 0.0055
4
[ 5] Model|  Actual (M-Ay2
[ 6] 1 ,04381  0.4664  0.0008
7 2/ 0.5265  0.5186  0.0001
| 8 | =($B$2+A6-1)/($BS1+$B$2+A6-1)| 0.0021
1 9 | 47 0.6398] 0.6300  0.0001
[10] 5 0.6783 0.6704  0.0001
(11| 6 07094 0.6870  0.0005
[12] 7 07350 0.7557|  0.0004
[13] 8 07564 07676  0.0001
[ 14] 9 07746 0.7984]  0.0006
[15] 10 07903  0.8174]  0.0007
16| 11 0.8040  0.8387
[17] 12 0.8160  0.8601
[ 18] 13 0.8266  0.8696
[19] 14 0.8360  0.8909
[20] 15 0.8445  0.8980
[21] 16 0.8521  0.8980
[22] 17 0.8591  0.9099
[ 23] 18 0.8654  0.9194
[ 24] 19 08711  0.9194
25 20 0.8764  0.9265

Figure 9: Fitting (3) to the KR data using NLS.

While the tracking/predictive performance of the sSBG model on this
dataset is not up to the standard of that for the first two datasets
(Figure 4), it is so much better than that of (1), under-predicting the
period 20 retention rate by 5.4% (versus 18.3%).

This analysis, coupled with that presented in FH, suggests that any
attempt to take a series of past retention numbers (for a given group
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Figure 10: Actual versus sBG model estimates of retention rates for the KR
data.

of customers) and project them into the future should not tackle the
problem by fitting flexible functions of time to either the survival or
retention rate data.

25. Such an analysis task should use a formal model of contract duration;
the sBG distribution is one such model.
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