
Implementing the SBB-G/B Model

in MATLAB

Peter S. Fader

www.petefader.com

Bruce G. S. Hardie†

www.brucehardie.com

January 2011

This note documents a somewhat informal MATLAB-based implementation
of the SBB-G/B model, replicating and extending the analyses reported in

Section 5 of Fader, Hardie and Shang (2010). It is assumed that the reader is
familiar with the concepts of the method of maximum simulated likelihood,
the basics of evaluating integrals using Monte Carlo integration, the use

of the Cholesky decomposition of the covariance matrix when generating
draws from a multivariate normal distribution, and so on. It is also assumed

that the reader is familiar with the mathematics and implementation of the
BG/BB model (e.g., has worked through both Fader et al. (2010) and Fader

and Hardie (2011).)

1. We load the recency/frequency summary of the annual donation be-
havior by the 1995 cohort of first-time supporters (Table 2 in the

paper) into MATLAB using the following script:

% load_data.m

global x tx n num

tmp = [6 6 6 1203,

5 6 6 728,

4 6 6 512,

3 6 6 357,

2 6 6 234,

1 6 6 129,

5 5 6 335,

4 5 6 284,

3 5 6 225,

2 5 6 173,

1 5 6 119,

†
c© 2011 Peter S. Fader and Bruce G. S. Hardie. This document and the associated

MATLAB files can be found at < http://brucehardie.com/notes/023/>.

1

4 4 6 240,

3 4 6 181,

2 4 6 155,

1 4 6 78,

3 3 6 322,

2 3 6 255,

1 3 6 129,

2 2 6 613,

1 2 6 277,

1 1 6 1091,

0 0 6 3464];

x = tmp(:,1);

tx = tmp(:,2);

n = tmp(:,3);

num = tmp(:,4);

clear tmp

2. We generate two vectors of random numbers drawn from a normal dis-
tribution with mean zero and variance one using the following script.

(For the purposes of this analysis, we are using 100,000 draws to eval-
uate the integrals of interest.)

% generate_common_random_numbers.m

global Z

randn(’state’,100); % set the seed for purposes of replication

Z = randn(100000,2);

3. This model sees us replacing the beta distributions for p and θ with

logit-normal distributions. We will first consider the uncorrelated
model.

The following function computes the value of the sample log-likelihood

function for a given set of model parameters (contained in the vector
param):

function [f,g]= SbbGB_ll_uncorr(param)

% SbbGB_ll_uncorr.m -- evaluate the log-likelihood

% function for the uncorrelated S_BB-G/B model

global x tx n num Z

%

% Part A

Mu = [param(1) param(2)];

Sigma = diag([param(3) param(4)]);

Y = Z*sqrt(Sigma);

logitp = Y(:,1) + Mu(1);

p = exp(logitp)./(1+exp(logitp));

logitt = Y(:,2) + Mu(2);

t = exp(logitt)./(1+exp(logitt));

%

% Part B

2

lik = [];

for i = 1:22

tmp_lik = p.^x(i).*(1-p).^(n(i)-x(i)).*(1-t).^(n(i));

for j = 0:(n(i)-tx(i)-1)

tmp_lik = tmp_lik + p.^x(i).*(1-p).^(tx(i)...

-x(i)+j).*t.*(1-t).^(tx(i)+j);

end;

ll(i) = log(mean(tmp_lik));

end;

%

f = -ll*num;

[f/1000 param]

g=[];

The first and second elements of param are the mean and variance of
the normal distribution, the draws from which are transformed into

values of p using the logistic transformation in “Part A”. Similarly,
the third and fourth elements of param are the mean and variance of
the normal distribution whose draws are transformed into values of θ.

Now that we have, in this case, 100,000 draws from the logit-normal

distributions for p and θ, “Part B” sees us performing the Monte Carlo
integration: computing the likelihood function (equation (4) in the

paper) for each draw and taking the average of the resulting quantity.
The log of this is the value of the (simulated) log-likelihood function

for the parameter values contained in param.

4. We use the fmincon routine (which is part of the Optimization Tool-
box) to find the maximum of the log-likelihood function (or, more

correctly, the minimum of −LL) via the following script:

% estimate_SbbGB_uncorr.m

lb = -10*[1 1 0 0];

ub = 10*[1 1 1 1];

initial = .1*ones(1,4);

[params ll] = fmincon(’SbbGB_ll_uncorr’,initial,[],[],[],[],lb,ub)

5. fmincon terminates at

params = 0.7195 -1.9931 3.1782 2.2190

ll = 3.3226e+004

These are the “Uncorr” parameters results reported in Table 10 in the

paper. The moments in (P, Θ) space are generated using the following
script:

% uncorr_moments.m

Mu = [params(1) params(2)];

3

Sigma = diag([params(3) params(4)]);

Y = Z*sqrt(Sigma);

logitp = Y(:,1) + Mu(1);

p = exp(logitp)./(1+exp(logitp));

logitt = Y(:,2) + Mu(2);

t = exp(logitt)./(1+exp(logitt));

EP = mean(p); VP = mean(p.*p)-EP^2;

ET = mean(t); VT = mean(t.*t)-ET^2;

6. The commands hist(p,100) and hist(t,100) give us the following
plots of the distributions of P and Θ:

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

7000

p θ

These are very similar to the prior plots given in Figure 7 in the paper.

(Note the differences as p tends to 1 and θ tends to 0.)

7. We now run the correlated model. The only change we need to make

to the log-likelihood code concerns the creation of Y given the two
columns of uncorrelated normal random numbers contained in Z. Note

that we are no longer directly estimating the variance of logit(P) and
logit(Θ); rather we are estimating the elements of the Cholesky de-

composition of the covariance matrix (R).

The following function computes the value of the SBB-G/B log-likelihood
function:

function [f,g]=SbbGB_ll_corr(param)

% SbbGB_ll_corr.m -- evaluate the log-likelihood

% function for the (correlated) S_BB-G/B model

global x tx n num Z

%

% Part A

Mu = [param(1) param(2)];

R = [param(3) param(4); 0 param(5)];

Y = Z*R;

logitp = Y(:,1) + Mu(1);

p = exp(logitp)./(1+exp(logitp));

logitt = Y(:,2) + Mu(2);

t = exp(logitt)./(1+exp(logitt));

%

4

% Part B

lik = [];

for i = 1:22

tmp_lik = p.^x(i).*(1-p).^(n(i)-x(i)).*(1-t).^(n(i));

for j = 0:(n(i)-tx(i)-1)

tmp_lik = tmp_lik + p.^x(i).*(1-p).^(tx(i)-x(i)+j).*t.*(1-t).^(tx(i)+j);

end;

ll(i) = log(mean(tmp_lik));

end;

f = -ll*num;

[f/1000 param]

g=[];

8. We find the maximum of the log-likelihood function via the following
script:

% estimate_SbbGB_corr.m

lb = -10*ones(1,5);

ub = 10*ones(1,5);

initial = .1*ones(1,5);

[params ll] = fmincon(’SbbGB_ll_corr’,initial,[],[],[],[],lb,ub)

9. fmincon terminates at

params = 1.1148 -2.1448 -1.9663 -0.9056 1.7940

ll = 3.3211e+004

These are the “Corr” parameters results reported in Table 10 in the
paper. The moments in (P, Θ) space are generated using the following

script:

% corr_moments.m

Mu = [params(1) params(2)];

R = [params(3) params(4); 0 params(5)];

Y = Z*R;

logitp = Y(:,1) + Mu(1);

p = exp(logitp)./(1+exp(logitp));

logitt = Y(:,2) + Mu(2);

t = exp(logitt)./(1+exp(logitt));

EP = mean(p); VP = mean(p.*p)-EP^2;

ET = mean(t); VT = mean(t.*t)-ET^2;

covPT = mean(p.*t)-EP*ET; corrPT = covPT/sqrt(VP*VT);

10. In order to compute E[X(n)]—as required for creating the tracking

plots—we need to take the expectation of equation (A5) over the SBB

distribution for P and Θ. This is achieved via the following code:

5

EX = [];

for s = 1:11

EX(s) = mean(p.*(1-t)./t - p.*(1-t).^(s+1)./t);

end

The resulting numbers multiplied by 11,104 yield the SBB-G/B num-
bers plotted in Figure 14a in the paper.

11. If we want to create a histogram to evaluate in-sample fit (along the
lines of Figure 3 in the paper), we need to compute P (X(n) = x).
We do this by taking the expectation of equation (A4) over the SBB

distribution for P and Θ:

ms = 6; % time period for computation of probabilities (n)

PX = [];

for s = 0:ms

tmp_PX = nchoosek(ms,s).*p.^s...

.*(1-p).^(ms-s).*(1-t).^ms;

for j = s:(ms-1)

tmp_PX = tmp_PX + nchoosek(j,s).*p.^s.*(1-p).^(j-s).*t...

.*(1-t).^j;

end;

PX(s+1) = mean(tmp_PX);

end;

Multiplying PX by 11,104 gives us the expected number of people mak-

ing 0, 1, . . . , 6 repeat transactions between 1996 and 2001. (These
numbers are not reported in the paper.)

12. In order to create the distribution of holdout-period transactions (Fig-

ure 15 in the paper), we need to compute P (X(n, n + n∗) = x∗). We
do this by taking the expectation of the unnumbered equation below

(A6) over the SBB distribution for P and Θ:

ms = 5; % time period for computation of probabilities (n*)

PXf = [];

for s = 0:ms

tmp_PXf = (s==0)*(1-(1-t).^(max(n))) + nchoosek(ms,s).*p.^s...

.*(1-p).^(ms-s).*(1-t).^(max(n)+ms);

for j = s:(ms-1)

tmp_PXf = tmp_PXf + nchoosek(j,s).*p.^s.*(1-p).^(j-s).*t...

.*(1-t).^(max(n)+j);

end;

PXf(s+1) = mean(tmp_PXf);

end;

The resulting numbers multiplied by 11,104 yield the SBB-G/B num-

bers plotted in Figure 15 in the paper.

(The file create basic plot numbers.m contains the above three snip-

pets of code.)

6

13. Following the logic associated with the derivation of equation (13),
we obtain conditional expectation numbers for the SBB-G/B model by

evaluating the following expression:

E(X(n,n + n∗) |µ, Σ, x, tx, n)

=

∫

1

0

∫

1

0

{

E(X(n, n + n∗) | p, θ, alive at n)

× P (alive at n | p, θ, x, tx, n)

× f(p, θ |µ, Σ, x, tx, n)
}

dp dθ

=
1

L(µ, Σ | x, tx, n)
∫

1

0

∫

1

0

{

E(X(n, n + n∗) | p, θ, alive at n)

× px(1 − p)n−x(1 − θ)nf(p, θ |µ, Σ)
}

dp dθ .

This is computed via the following script:

% conditional_expectations.m

m = 5; % time horizon for conditional expectation

CE = [];

for i = 1:22

tmp_lik = p.^x(i).*(1-p).^(n(i)-x(i)).*(1-t).^(n(i));

tmp_CE = (p.*(1-t)./t - p.*(1-t).^(m+1)./t).*tmp_lik ;

for j = 0:(n(i)-tx(i)-1)

tmp_lik = tmp_lik + p.^x(i).*(1-p).^(tx(i)-x(i)+j).*...

t.*(1-t).^(tx(i)+j);

end;

lik = mean(tmp_lik);

CE(i) = mean(tmp_CE)/lik;

end;

(The same logic is used to compute other conditional quantities such
as P (alive at n + 1 |µ, Σ, x, tx, n), P (X(n, n+n∗) = x∗ |µ, Σ, x, tx, n),

and DERT (d |µ, Σ, x, tx, n).)

14. The following code reformats the results into “tabular” form, as pre-
sented in Table 11 in the paper:

TBL_CE = zeros(max(n)+1,max(tx)+1);

for i = 1:22

TBL_CE(x(i)+1,tx(i)+1) = CE(i);

end;

15. In order to create the conditional expectations plots (Figure 16 in the

paper), we need to average the conditional expectation numbers over

7

customers with different values of tx for the “frequency” plot, and
over customers with different values of x for the “recency” plot. The

following code performs these calculations:

for i = 1:22

tmp_tot(x(i)+1,tx(i)+1) = CE(i)*num(i);

tmp_num(x(i)+1,tx(i)+1) = num(i);

end;

CEbyF = sum(tmp_tot,2)./sum(tmp_num,2); % as a function of frequency

CEbyR = sum(tmp_tot,1)./sum(tmp_num,1); % as a function of recency

References

Fader, Peter S. and Bruce G. S. Hardie (2011), “Implementing the BG/BB
Model for Customer-Base Analysis in Excel.” <http://brucehardie.

com/notes/010/>

Fader, Peter S., Bruce G. S. Hardie, and Jen Shang (2010), “Customer-Base
Analysis in a Discrete-Time Noncontractual Setting,” Marketing Science,

29 (November–December), 1086–1108.

8

