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Abstract

This note presents the derivation of an expression for the Pareto/NBD model condi-
tional PMF, P(X(T,T +t) = 2* |z, t,, T).

1 Preliminaries

Recall the basic Pareto/NBD model results (Fader and Hardie 2005):

i) The individual-level likelihood function for someone with purchase history (z, t,, T')
is
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ii) The likelihood function for a randomly chosen individual with purchase history
(z,t3,T) is
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iii) The joint posterior distribution of A and M is
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is the gamma distribution that captures heterogeneity in transaction rates across

customers, and
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is the gamma distribution that captures heterogeneity in “death” rates across cus-
tomers.

iv) The probability that a customer with purchase history (x,t,,T) is “alive” at time
T is the probability that the (unobserved) time at which he “dies” (w) occurs after
T. Conditional on A and p, this is
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It follows from (1) that the probability that a customer with purchase history
(z,ty,T) is “dead” at time T is
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Removing the conditioning on A and p gives us
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As we proceed with the derivation, we will need evaluate a double integral of the
following form several times:
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Consider the transformation ¥ = M/(A + M) and Z = A + M. Noting that the
Jacobian of this transformation is
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it follows from the standard transformation of random variables method (Casella and
Berger 2002, Section 4.3, pp. 156-162; Mood et al. 1974, Section 6.2, p. 204ff) that the
joint distribution of Y and Z is
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We solve (10) in the following manner:
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which, recalling Euler’s integral for the Gaussian hypergeometric function,’

Ofﬁs F(’r’—|—s_|-a_|_b_c)
- B
T(IT(s) (o £ dyrerarie D+ a5+0)

><gFl(r—i—s—l—a—I—b—c,s—l—b;r—l—s+a+bvz+§) (11)

Looking closely at (11), we see that the argument z of the Gaussian hypergeometric

function, 2—;2, is guaranteed to be bounded between 0 and 1 when o > 3 (since § > 0),

thus ensuring convergence of the series representation of the function. However, when
a < 3 we can be faced with the situation where 3—;2 <
divergent.

Applying the linear transformation (Abramowitz and Stegun 1972, equation 15.3.4)

—1, in which case the series is
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(We note that the argument z of the above Gaussian hypergeometric function is bounded
between 0 and 1 when o < 3.)

We therefore present (11) and (12) as solutions to (10): we use (11) when « > 3 and
(12) when o < 3.
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2 Derivation

Suppose we know an individual’s unobserved latent characteristics A and p. If the customer
is alive at T' (i.e., w > T), it follows from the derivation of P(X (t) = = | A, ) (Fader and
Hardie 2006) that

PX(T\T+t)=2" |\, pw>T)

_ Q0T N Ty e (AT (13)
z*] A+ )z

When z* > 0,
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This also holds when z* = 0. However, in this second case we also have to account for
the possibly that no purchases are observed in (7', T + t] because the customer died at or
before T'. Therefore,
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We remove the conditioning on A and p by taking the expectation of this over the joint
posterior distribution of A and M, (4), giving us

P(X(T,T+1) = o |r,a,s,6;2,t5,T) = 6p—o{1 — P(2>T|r,a,s,f;2,t,,T)}

1 ¢ G
—B1 +By — —Bs; 16
* L(r,a,s,B|x,t,, T) | z*! LB Zz:% il (16)

where

B = / / AT+ = OT+0g (X [ a)g(u | 5, B) dA s
0 0

:{/0 /\m+m*e—A(T+t)g(/\Ma)d)\}{/0 e T g(u] s, B) d#}

 Tlr+x+a%) a’ 3*
T (e T+ (BT + 1)




/\:E—l—m B
/ / e g ra)glul 5, ) dd
7‘/33

:WF(T+3+$)B(T+:E+:E*,S+1)

2F1(T’—|—S+ZL' s+ 1; T+3+$+$*+17Q+T)

(a+ T)rtste He=s (18)
X
2Fi(r+sta,rtatatirbstat s +158)
s ifa< g
ATy, M) (T4t
/ / e TG a)g (a5, 6) dAd
7‘/38
:WF(T+S+ZE+i)B(T+ZE+!L’*,S+1)
2F1(T’—|—S—|—:L'—|—’i,3+1;T+3+£L'+JL'*+1§QO[+;T€_15) if >0
- Io =
y (0 + T + tyrstati (19)

2F1(r+s—I—:E—l—z',r—l—:n—l—:n*;r—l—s—l-:n—l—:n*+1;%)
(ﬁ_i_T_i_t)T-l-S-l-.’E-l-i

fa<p

3 The Special Case of * = 0

We can derive a simpler expression for the special case of * = 0 (i.e., no purchasing in
the interval (7', 7'+ t]). Conditional on A and p, there are three ways in which a customer
with purchase history (x, t,,T) could make no purchases in the interval (7,7 + ¢t]:

e The customer is dead at T', which occurs with probability P(Q2 < T'| A\, u, x,t,, T),
(8), or

e The customer is alive at T, which occurs with probability P(Q2 > T' |\, u, x,t,, T),
(7), and

— he remains alive through the interval (T,7T + t] (with probability e=#!) and
makes no purchases in that interval (the Poisson probability of which is e ),
or

— he dies at time w in the interval (T, T+t] and makes no purchases in the interval
(T, w]:
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Combining terms and simplifying gives us
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Taking the expectation of this over the joint posterior distribution of A and p, (4), it
follows from (10)—(12) that

L(r+x)a"p*
I(r)

1 S r+x
A — A 21
XL(’r’,a,s,ﬁ|l’,tm,T){<T+S+ZL'> 1+<T’+S+ZE> 3}’ (21)

P(X(T,T+t)=0|r,a,s,0;z,t,;, T) =

where 3
. . a—
2F1(r+s—|—:n,s7r+s—|—:n+17m) fa> g
(a+T +t)r+ste -
Az =
JFi(r+s+a,r+a+Lir+s+a+1; A
( 6+T+t) if o<

G+ T+ oy
Given (3), this can be rewritten as

sA1 + (r + :L')Ag
sAL+ (r+x)As

PX(T,T+1t)=0[r,a,s 82,1, T) = (22)
Setting x* to 0 in (16) does not give us (21). Are these two equations equivalent? We
first note that evaluating (15) at 2* = 0 and using (8) as the expression for 1 — P( >
T |\ p;x,t,, T) (and simplifying) gives us (20). Therefore (21) must be equivalent to (16)
at 2* = 0.
To prove this, we first note that (1) leads to an alternative expression for the
Pareto/NBD likelihood function (Fader and Hardie 2005):
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Let us first consider the case of & > (3. Substituting (9) and (23) in (16) for z* = 0
gives us
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Equivalence to (21) implies
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One of the so-called Gauss’ relations for contiguous functions states (Abramowitz and
Stegun 1972, equation 15.2.24) is
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Therefore (24) is true, which means (16) (evaluated at * = 0) and (21) are equivalent
when a > (.
Turning to the case of a < 3, substituting (9) and (23) in (16) for * = 0 gives us

1 T(r+z) o'B stl(r—l—s—l—:E,r—l—:E;r—l—s—l—:E—l—1;%)
L(r,a,s, B a,t, T) T(r) r+s+z (B +tg)rtete
N r+s4ax _82F1(T+S+ZE,T+ZE;T+S+1E+17ﬁf_Tit)
(a+ T+ (3 +T +1)° (B+T +t)rtste '
Equivalence to (21) implies
+T+1 _
(r—l—s—l—:p)(%) —82F1(T+8+:E,T—|—ZE;T—|—S—|—$—|-1;%)

:(r—l—:z:)gFl(r—l—s—l—:E,r—l—:E—l—1;7"—1—5—1—:17—1—1;%).

Using the result 9 Fy(a,b;b;2) = (1 — 2)7%, we get

TTT
8 . B+T+t
Rt sttt = ()
meaning equivalence implies
stl(r—l—s—l—:z:,r—l—:E;r—l—s—l—:E—l—1;%)
—|—(r—l—:z:)gFl(r—l—s—l—:E,r—l—:E—l—1;7"—1—3—1—:17—1—1;%)
—(r—l—s—|—:1:)2F1(r—|—s—|—:17,r—|—:17;r—|—s—|—:17;%):0, (26)

which we see from (25) is true. Therefore (16) (evaluated at z* = 0) and (21) are also
equivalent when a < (.
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