Deriving the Conditional PMF of the Pareto/NBD Model

Peter S. Fader
www.petefader.com
Bruce G. S. Hardie
www.brucehardie. com ${ }^{\dagger}$

January 2014

Abstract

This note presents the derivation of an expression for the Pareto/NBD model conditional PMF, $P\left(X(T, T+t)=x^{*} \mid x, t_{x}, T\right)$.

1 Preliminaries

Recall the basic Pareto/NBD model results (Fader and Hardie 2005):
i) The individual-level likelihood function for someone with purchase history $\left(x, t_{x}, T\right)$ is

$$
\begin{align*}
L\left(\lambda, \mu \mid x, t_{x}, T\right) & =\lambda^{x} e^{-(\lambda+\mu) T}+\frac{\lambda^{x} \mu}{\lambda+\mu} e^{-(\lambda+\mu) t_{x}}-\frac{\lambda^{x} \mu}{\lambda+\mu} e^{-(\lambda+\mu) T} \tag{1}\\
& =\frac{\lambda^{x} \mu}{\lambda+\mu} e^{-(\lambda+\mu) t_{x}}+\frac{\lambda^{x+1}}{\lambda+\mu} e^{-(\lambda+\mu) T} . \tag{2}
\end{align*}
$$

ii) The likelihood function for a randomly chosen individual with purchase history $\left(x, t_{x}, T\right)$ is

$$
\begin{equation*}
L\left(r, \alpha, s, \beta \mid x, t_{x}, T\right)=\frac{\Gamma(r+x) \alpha^{r} \beta^{s}}{\Gamma(r)}\left\{\left(\frac{s}{r+s+x}\right) \mathrm{A}_{1}+\left(\frac{r+x}{r+s+x}\right) \mathrm{A}_{2}\right\} \tag{3}
\end{equation*}
$$

where

$$
\mathrm{A}_{1}= \begin{cases}\frac{{ }_{2} F_{1}\left(r+s+x, s+1 ; r+s+x+1 ; \frac{\alpha-\beta}{\alpha+t_{x}}\right)}{\left(\alpha+t_{x}\right)^{r+s+x}} & \text { if } \alpha \geq \beta \\ \frac{{ }_{2} F_{1}\left(r+s+x, r+x ; r+s+x+1 ; \frac{\beta-\alpha}{\beta+t_{x}}\right)}{\left(\beta+t_{x}\right)^{r+s+x}} & \text { if } \alpha<\beta\end{cases}
$$

[^0]and
\[

\mathrm{A}_{2}= $$
\begin{cases}\frac{{ }_{2} F_{1}\left(r+s+x, s ; r+s+x+1 ; \frac{\alpha-\beta}{\alpha+T}\right)}{(\alpha+T)^{r+s+x}} & \text { if } \alpha \geq \beta \\ \frac{{ }_{2} F_{1}\left(r+s+x, r+x+1 ; r+s+x+1 ; \frac{\beta-\alpha}{\beta+T}\right)}{(\beta+T)^{r+s+x}} & \text { if } \alpha<\beta\end{cases}
$$
\]

iii) The joint posterior distribution of Λ and M is

$$
\begin{equation*}
g\left(\lambda, \mu \mid r, \alpha, s, \beta ; x, t_{x}, T\right)=\frac{L\left(\lambda, \mu \mid x, t_{x}, T\right) g(\lambda \mid r, \alpha) g(\mu \mid s, \beta)}{L\left(r, \alpha, s, \beta \mid x, t_{x}, T\right)}, \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
g(\lambda \mid r, \alpha)=\frac{\alpha^{r} \lambda^{r-1} e^{-\lambda \alpha}}{\Gamma(r)} \tag{5}
\end{equation*}
$$

is the gamma distribution that captures heterogeneity in transaction rates across customers, and

$$
\begin{equation*}
g(\mu \mid s, \beta)=\frac{\beta^{s} \mu^{s-1} e^{-\mu \beta}}{\Gamma(s)} \tag{6}
\end{equation*}
$$

is the gamma distribution that captures heterogeneity in "death" rates across customers.
iv) The probability that a customer with purchase history $\left(x, t_{x}, T\right)$ is "alive" at time T is the probability that the (unobserved) time at which he "dies" (ω) occurs after T. Conditional on λ and μ, this is

$$
\begin{equation*}
P\left(\Omega>T \mid \lambda, \mu ; x, t_{x}, T\right)=\frac{\lambda^{x} e^{-(\lambda+\mu) T}}{L\left(\lambda, \mu \mid x, t_{x}, T\right)} . \tag{7}
\end{equation*}
$$

It follows from (1) that the probability that a customer with purchase history $\left(x, t_{x}, T\right)$ is "dead" at time T is

$$
\begin{equation*}
P\left(\Omega \leq T \mid \lambda, \mu, x, t_{x}, T\right)=\frac{\frac{\lambda^{x} \mu}{\lambda+\mu} e^{-(\lambda+\mu) t_{x}}-\frac{\lambda^{x} \mu}{\lambda+\mu} e^{-(\lambda+\mu) T}}{L\left(\lambda, \mu \mid x, t_{x}, T\right)} . \tag{8}
\end{equation*}
$$

Removing the conditioning on λ and μ gives us

$$
\begin{align*}
& P\left(\Omega>T \mid r, \alpha, s, \beta ; x, t_{x}, T\right) \\
& \quad=\frac{\Gamma(r+x) \alpha^{r} \beta^{s}}{\Gamma(r)(\alpha+T)^{r+x}(\beta+T)^{s}} / L\left(r, \alpha, s, \beta \mid x, t_{x}, T\right) . \tag{9}
\end{align*}
$$

As we proceed with the derivation, we will need evaluate a double integral of the following form several times:

$$
\begin{equation*}
\mathrm{A}=\int_{0}^{\infty} \int_{0}^{\infty} \frac{\lambda^{a} \mu^{b}}{(\lambda+\mu)^{c}} e^{-(\lambda+\mu) d} g(\lambda \mid r, \alpha) g(\mu \mid s, \beta) d \lambda d \mu \tag{10}
\end{equation*}
$$

Consider the transformation $Y=M /(\Lambda+M)$ and $Z=\Lambda+M$. Noting that the Jacobian of this transformation is

$$
J=\left|\begin{array}{ll}
\frac{\partial \lambda}{\partial y} & \frac{\partial \lambda}{\partial z} \\
\frac{\partial \mu}{\partial y} & \frac{\partial \mu}{\partial z}
\end{array}\right|=-z,
$$

it follows from the standard transformation of random variables method (Casella and Berger 2002, Section 4.3, pp. 156-162; Mood et al. 1974, Section 6.2, p. 204ff) that the joint distribution of Y and Z is

$$
g(y, z \mid \alpha, \beta, r, s)=\frac{\alpha^{r} \beta^{s}}{\Gamma(r) \Gamma(s)} y^{s-1}(1-y)^{r-1} z^{r+s-1} e^{-z(\alpha-(\alpha-\beta) y)} .
$$

We solve (10) in the following manner:

$$
\begin{aligned}
\mathrm{A} & =\int_{0}^{1} \int_{0}^{\infty} y^{b}(1-y)^{a} z^{a+b-c} e^{-z d} g(y, z \mid \alpha, \beta, r, s) d z d y \\
& =\frac{\alpha^{r} \beta^{s}}{\Gamma(r) \Gamma(s)} \int_{0}^{1} \int_{0}^{\infty} y^{s+b-1}(1-y)^{r+a-1} z^{r+s+a+b-c-1} e^{-z(\alpha+d-(\alpha-\beta) y)} d z d y \\
& =\frac{\alpha^{r} \beta^{s}}{\Gamma(r) \Gamma(s)} \int_{0}^{1} y^{s+b-1}(1-y)^{r+a-1}\left\{\int_{0}^{\infty} z^{r+s+a+b-c-1} e^{-z(\alpha+d-(\alpha-\beta) y)} d z\right\} d y
\end{aligned}
$$

which for $r+s+a+b>c$

$$
=\frac{\alpha^{r} \beta^{s}}{\Gamma(r) \Gamma(s)} \frac{\Gamma(r+s+a+b-c)}{(\alpha+d)^{r+s+a+b-c}} \int_{0}^{1} y^{s+b-1}(1-y)^{r+a-1}\left[1-\left(\frac{\alpha-\beta}{\alpha+d}\right) y\right]^{-(r+s+a+b-c)} d z
$$

which, recalling Euler's integral for the Gaussian hypergeometric function, ${ }^{1}$

$$
\begin{align*}
& =\frac{\alpha^{r} \beta^{s}}{\Gamma(r) \Gamma(s)} \frac{\Gamma(r+s+a+b-c)}{(\alpha+d)^{r+s+a+b-c}} B(r+a, s+b) \\
& \times{ }_{2} F_{1}\left(r+s+a+b-c, s+b ; r+s+a+b ; \frac{\alpha-\beta}{\alpha+d}\right) . \tag{11}
\end{align*}
$$

Looking closely at (11), we see that the argument z of the Gaussian hypergeometric function, $\frac{\alpha-\beta}{\alpha+d}$, is guaranteed to be bounded between 0 and 1 when $\alpha \geq \beta$ (since $\beta>0$), thus ensuring convergence of the series representation of the function. However, when $\alpha<\beta$ we can be faced with the situation where $\frac{\alpha-\beta}{\alpha+d}<-1$, in which case the series is divergent.

Applying the linear transformation (Abramowitz and Stegun 1972, equation 15.3.4)

$$
{ }_{2} F_{1}(a, b ; c ; z)=(1-z)^{-a}{ }_{2} F_{1}\left(a, c-b ; c ; \frac{z}{z-1}\right)
$$

gives us

$$
\begin{align*}
& \mathrm{A}=\frac{\alpha^{r} \beta^{s}}{\Gamma(r) \Gamma(s)} \frac{\Gamma(r+s+a+b-c)}{(\beta+d)^{r+s+a+b-c} B(r+a, s+b)} \\
& \quad \times{ }_{2} F_{1}\left(r+s+a+b-c, r+a ; r+s+a+b ; \frac{\beta-\alpha}{\beta+d}\right) . \tag{12}
\end{align*}
$$

(We note that the argument z of the above Gaussian hypergeometric function is bounded between 0 and 1 when $\alpha<\beta$.)

We therefore present (11) and (12) as solutions to (10): we use (11) when $\alpha \geq \beta$ and (12) when $\alpha<\beta$.

[^1]
2 Derivation

Suppose we know an individual's unobserved latent characteristics λ and μ. If the customer is alive at T (i.e., $\omega>T$), it follows from the derivation of $P(X(t)=x \mid \lambda, \mu)$ (Fader and Hardie 2006) that

$$
\begin{align*}
& P\left(X(T, T+t)=x^{*} \mid \lambda, \mu, \omega>T\right) \\
& \quad=\frac{(\lambda t)^{x^{*}} e^{-(\lambda+\mu) t}}{x^{*}!}+\frac{\lambda^{x^{*}} \mu}{(\lambda+\mu)^{x^{*}+1}}\left[1-e^{-(\lambda+\mu) t} \sum_{i=0}^{x^{*}} \frac{[(\lambda+\mu) t]^{i}}{i!}\right] . \tag{13}
\end{align*}
$$

When $x^{*}>0$,

$$
\begin{aligned}
& P\left(X(T, T+t)=x^{*} \mid \lambda, \mu ; x, t_{x}, T\right) \\
& \quad=P\left(X(T, T+t)=x^{*} \mid \lambda, \mu, \omega>T\right) P\left(\Omega>T \mid \lambda, \mu ; x, t_{x}, T\right) .
\end{aligned}
$$

This also holds when $x^{*}=0$. However, in this second case we also have to account for the possibly that no purchases are observed in $(T, T+t]$ because the customer died at or before T. Therefore,

$$
\begin{gather*}
P\left(X(T, T+t)=x^{*} \mid \lambda, \mu, x, t_{x}, T\right)=\delta_{x^{*}=0}\left[1-P\left(\Omega>T \mid \lambda, \mu ; x, t_{x}, T\right)\right] \\
+P\left(X(T, T+t)=x^{*} \mid \lambda, \mu, \omega>T\right) P\left(\Omega>T \mid \lambda, \mu ; x, t_{x}, T\right) . \tag{14}
\end{gather*}
$$

Therefore,

$$
\begin{align*}
& P\left(X(T, T+t)=x^{*} \mid \lambda, \mu ; x, t_{x}, T\right)=\delta_{x^{*}=0}\left\{1-\frac{\lambda^{x} e^{-(\lambda+\mu) T}}{L\left(\lambda, \mu \mid x, t_{x}, T\right)}\right\} \\
&+\frac{1}{L\left(\lambda, \mu \mid x, t_{x}, T\right)}\left\{\frac{t^{x^{*}}}{x^{*}!} \lambda^{x+x^{*}} e^{-(\lambda+\mu)(T+t)}+\frac{\lambda^{x+x^{*}} \mu}{(\lambda+\mu)^{x^{*}+1}} e^{-(\lambda+\mu) T}\right. \\
&\left.\quad \sum_{i=0}^{x^{*}} \frac{t^{i}}{i!} \frac{\lambda^{x+x^{*}} \mu}{(\lambda+\mu)^{x^{*}-i+1}} e^{-(\lambda+\mu)(T+t)}\right\} . \tag{15}
\end{align*}
$$

We remove the conditioning on λ and μ by taking the expectation of this over the joint posterior distribution of Λ and M, (4), giving us

$$
\begin{align*}
& P\left(X(T, T+t)=x^{*} \mid r, \alpha, s, \beta ; x, t_{x}, T\right)=\delta_{x^{*}=0}\left\{1-P\left(\Omega>T \mid r, \alpha, s, \beta ; x, t_{x}, T\right)\right\} \\
&+\frac{1}{L\left(r, \alpha, s, \beta \mid x, t_{x}, T\right)}\left\{\frac{t^{x^{*}}}{x^{*}!} \mathrm{B}_{1}+\mathrm{B}_{2}-\sum_{i=0}^{x^{*}} \frac{t^{i}}{i!} \mathrm{B}_{3 i}\right\} \tag{16}
\end{align*}
$$

where

$$
\begin{align*}
\mathrm{B}_{1} & =\int_{0}^{\infty} \int_{0}^{\infty} \lambda^{x+x^{*}} e^{-(\lambda+\mu)(T+t)} g(\lambda \mid r, \alpha) g(\mu \mid s, \beta) d \lambda d \mu \\
& =\left\{\int_{0}^{\infty} \lambda^{x+x^{*}} e^{-\lambda(T+t)} g(\lambda \mid r, \alpha) d \lambda\right\}\left\{\int_{0}^{\infty} e^{-\mu(T+t)} g(\mu \mid s, \beta) d \mu\right\} \\
& =\frac{\Gamma\left(r+x+x^{*}\right)}{\Gamma(r)} \frac{\alpha^{r} \beta^{s}}{(\alpha+T+t)^{r+x+x^{*}}(\beta+T+t)^{s}} \tag{17}
\end{align*}
$$

$$
\begin{align*}
\mathrm{B}_{2}= & \int_{0}^{\infty} \int_{0}^{\infty} \frac{\lambda^{x+x^{*}} \mu}{(\lambda+\mu)^{x^{*}+1}} e^{-(\lambda+\mu) T} g(\lambda \mid r, \alpha) g(\mu \mid s, \beta) d \lambda d \mu \\
= & \frac{\alpha^{r} \beta^{s}}{\Gamma(r) \Gamma(s)} \Gamma(r+s+x) B\left(r+x+x^{*}, s+1\right) \\
& \times \begin{cases}\frac{2 F_{1}\left(r+s+x, s+1 ; r+s+x+x *+1 ; \frac{\alpha-\beta}{\alpha+T}\right)}{(\alpha+T)^{r+s+x}} & \text { if } \alpha \geq \beta \\
\frac{{ }_{2} F_{1}\left(r+s+x, r+x+x^{*} ; r+s+x+x^{*}+1 ; \frac{\beta-\alpha}{\beta+T}\right)}{(\beta+T)^{r+s+x}} & \text { if } \alpha<\beta\end{cases} \tag{18}\\
\mathrm{B}_{3 i}= & \int_{0}^{\infty} \int_{0}^{\infty} \frac{\lambda^{x+x^{*}} \mu}{(\lambda+\mu)^{x^{*}-i+1} e^{-(\lambda+\mu)(T+t)} g(\lambda \mid r, \alpha) g(\mu \mid s, \beta) d \lambda d \mu} \\
= & \quad \times \begin{cases}\alpha^{r} \beta^{s} \\
\Gamma(r) \Gamma(s) \\
& (r+s+x+i) B\left(r+x+x^{*}, s+1\right) \\
\frac{{ }_{2} F_{1}\left(r+s+x+i, r+x+x^{*} ; r+s+x+x^{*}+1 ; \frac{\beta-\alpha}{\beta+T+t}\right)}{(\beta+T+t)^{r+s+x+i}} & \text { if } \alpha<\beta\end{cases}
\end{align*}
$$

3 The Special Case of $x^{*}=0$

We can derive a simpler expression for the special case of $x^{*}=0$ (i.e., no purchasing in the interval $(T, T+t])$. Conditional on λ and μ, there are three ways in which a customer with purchase history $\left(x, t_{x}, T\right)$ could make no purchases in the interval $(T, T+t]$:

- The customer is dead at T, which occurs with probability $P\left(\Omega \leq T \mid \lambda, \mu, x, t_{x}, T\right)$, (8), or
- The customer is alive at T, which occurs with probability $P\left(\Omega>T \mid \lambda, \mu, x, t_{x}, T\right)$, (7), and
- he remains alive through the interval $\left(T, T+t\right.$ (with probability $e^{-\mu t}$) and makes no purchases in that interval (the Poisson probability of which is $e^{-\lambda t}$), or
- he dies at time ω in the interval $(T, T+t]$ and makes no purchases in the interval $(T, \omega]$:

$$
\begin{aligned}
\int_{T}^{T+t} e^{-\lambda(\omega-T)} \mu e^{-\mu(\omega-T)} d \omega & =\mu \int_{0}^{t} e^{-(\lambda+\mu) s} d s \\
& =\frac{\mu}{\lambda+\mu}\left(1-e^{-(\lambda+\mu) t}\right) .
\end{aligned}
$$

Combining terms and simplifying gives us

$$
\begin{align*}
P(X(T, T & \left.+t)=0 \mid \lambda, \mu ; x, t_{x}, T\right)=\frac{1}{L\left(\lambda, \mu \mid x, t_{x}, T\right)} \\
\times & \left\{\frac{\lambda^{x} \mu}{\lambda+\mu} e^{-(\lambda+\mu) t_{x}}+\frac{\lambda^{x+1}}{\lambda+\mu} e^{-(\lambda+\mu)(T+t)}\right\} \tag{20}
\end{align*}
$$

Taking the expectation of this over the joint posterior distribution of λ and μ, (4), it follows from (10)-(12) that

$$
\begin{align*}
& P\left(X(T, T+t)=0 \mid r, \alpha, s, \beta ; x, t_{x}, T\right)=\frac{\Gamma(r+x) \alpha^{r} \beta^{s}}{\Gamma(r)} \\
& \quad \times \frac{1}{L\left(r, \alpha, s, \beta \mid x, t_{x}, T\right)}\left\{\left(\frac{s}{r+s+x}\right) \mathrm{A}_{1}+\left(\frac{r+x}{r+s+x}\right) \mathrm{A}_{3}\right\}, \tag{21}
\end{align*}
$$

where

$$
\mathrm{A}_{3}= \begin{cases}\frac{{ }_{2} F_{1}\left(r+s+x, s ; r+s+x+1 ; \frac{\alpha-\beta}{\alpha+T+t}\right)}{(\alpha+T+t)^{r+s+x}} & \text { if } \alpha \geq \beta \\ \frac{{ }_{2} F_{1}\left(r+s+x, r+x+1 ; r+s+x+1 ; \frac{\beta-\alpha}{\beta+T+t}\right)}{(\beta+T+t)^{r+s+x}} & \text { if } \alpha<\beta\end{cases}
$$

Given (3), this can be rewritten as

$$
\begin{equation*}
P\left(X(T, T+t)=0 \mid r, \alpha, s, \beta ; x, t_{x}, T\right)=\frac{s \mathrm{~A}_{1}+(r+x) \mathrm{A}_{3}}{s \mathrm{~A}_{1}+(r+x) \mathrm{A}_{2}} \tag{22}
\end{equation*}
$$

Setting x^{*} to 0 in (16) does not give us (21). Are these two equations equivalent? We first note that evaluating (15) at $x^{*}=0$ and using (8) as the expression for $1-P(\Omega>$ $\left.T \mid \lambda, \mu ; x, t_{x}, T\right)$ (and simplifying) gives us (20). Therefore (21) must be equivalent to (16) at $x^{*}=0$.

To prove this, we first note that (1) leads to an alternative expression for the Pareto/NBD likelihood function (Fader and Hardie 2005):

$$
\begin{equation*}
L\left(r, \alpha, s, \beta \mid x, t_{x}, T\right)=\frac{\Gamma(r+x) \alpha^{r} \beta^{s}}{\Gamma(r)}\left\{\frac{1}{(\alpha+T)^{r+x}(\beta+T)^{s}}+\left(\frac{s}{r+s+x}\right) \mathrm{A}_{0}\right\} \tag{23}
\end{equation*}
$$

where for $\alpha \geq \beta$

$$
\begin{aligned}
& \mathrm{A}_{0}=\frac{{ }_{2} F_{1}\left(r+s+x, s+1 ; r+s+x+1 ; \frac{\alpha-\beta}{\alpha+t_{x}}\right)}{\left(\alpha+t_{x}\right)^{r+s+x}} \\
&=\frac{{ }_{2} F_{1}\left(r+s+x, s+1 ; r+s+x+1 ; \frac{\alpha-\beta}{\alpha+T}\right)}{(\alpha+T)^{r+s+x}}
\end{aligned}
$$

while for $\alpha<\beta$

$$
\begin{aligned}
\mathrm{A}_{0}= & \frac{{ }_{2} F_{1}\left(r+s+x, r+x ; r+s+x+1 ; \frac{\beta-\alpha}{\beta+t_{x}}\right)}{\left(\beta+t_{x}\right)^{r+s+x}} \\
& \left.=\frac{{ }_{2} F_{1}\left(r+s+x, r+x ; r+s+x+1 ; \frac{\beta-\alpha}{\beta+T}\right.}{(\beta+T)^{r+s+x}}\right)
\end{aligned}
$$

Let us first consider the case of $\alpha \geq \beta$. Substituting (9) and (23) in (16) for $x^{*}=0$ gives us

$$
\begin{aligned}
\frac{1}{L\left(r, \alpha, s, \beta \mid x, t_{x}, T\right)} \frac{\Gamma(r+x)}{\Gamma(r)} \frac{\alpha^{r} \beta^{s}}{r+s+x}\left\{\frac{s_{2} F_{1}\left(r+s+x, s+1 ; r+s+x+1 ; \frac{\alpha-\beta}{\alpha+t_{x}}\right)}{\left(\alpha+t_{x}\right)^{r+s+x}}\right. \\
\left.\quad+\frac{r+s+x}{(\alpha+T+t)^{r+x}(\beta+T+t)^{s}}-\frac{s_{2} F_{1}\left(r+s+x, s+1 ; r+s+x+1 ; \frac{\alpha-\beta}{\alpha+T+t}\right)}{(\alpha+T+t)^{r+s+x}}\right\} .
\end{aligned}
$$

Equivalence to (21) implies

$$
\begin{gathered}
(r+s+x)\left(\frac{\alpha+T+t}{\beta+T+t}\right)^{s}-s_{2} F_{1}\left(r+s+x, s+1 ; r+s+x+1 ; \frac{\alpha-\beta}{\alpha+T+t}\right) \\
=(r+x)_{2} F_{1}\left(r+s+x, s ; r+s+x+1 ; \frac{\alpha-\beta}{\alpha+T+t}\right) .
\end{gathered}
$$

Noting that ${ }_{2} F_{1}(a, b ; b ; z)=(1-z)^{-a}$,

$$
{ }_{2} F_{1}\left(r+s+x, s ; r+s+x ; \frac{\alpha-\beta}{\alpha+T+t}\right)=\left(\frac{\alpha+T+t}{\beta+T+t}\right)^{s}
$$

equivalence implies

$$
\begin{align*}
(r+x) & { }_{2} F_{1}\left(r+s+x, s ; r+s+x+1 ; \frac{\alpha-\beta}{\alpha+T+t}\right) \\
+ & s_{2} F_{1}\left(r+s+x, s+1 ; r+s+x+1 ; \frac{\alpha-\beta}{\alpha+T+t}\right) \\
& \quad-(r+s+x){ }_{2} F_{1}\left(r+s+x, s ; r+s+x ; \frac{\alpha-\beta}{\alpha+T+t}\right)=0 \tag{24}
\end{align*}
$$

One of the so-called Gauss' relations for contiguous functions states (Abramowitz and Stegun 1972, equation 15.2.24) is

$$
\begin{equation*}
(c-b-1)_{2} F_{1}(a, b ; c ; z)+b_{2} F_{1}(a, b+1 ; c ; z)-(c-1)_{2} F_{1}(a, b ; c-1 ; z)=0 . \tag{25}
\end{equation*}
$$

Therefore (24) is true, which means (16) (evaluated at $x^{*}=0$) and (21) are equivalent when $\alpha \geq \beta$.

Turning to the case of $\alpha<\beta$, substituting (9) and (23) in (16) for $x^{*}=0$ gives us

$$
\begin{aligned}
& \frac{1}{L\left(r, \alpha, s, \beta \mid x, t_{x}, T\right)} \frac{\Gamma(r+x)}{\Gamma(r)} \frac{\alpha^{r} \beta^{s}}{r+s+x}\left\{\frac{s_{2} F_{1}\left(r+s+x, r+x ; r+s+x+1 ; \frac{\beta-\alpha}{\beta+t_{x}}\right)}{\left(\beta+t_{x}\right)^{r+s+x}}\right. \\
& \quad+\frac{r+s+x}{(\alpha+T+t)^{r+x}(\beta+T+t)^{s}}-\frac{s_{2} F_{1}\left(r+s+x, r+x ; r+s+x+1 ; \frac{\beta-\alpha}{\beta+T+t}\right)}{(\beta+T+t)^{r+s+x}} .
\end{aligned}
$$

Equivalence to (21) implies

$$
\begin{gathered}
(r+s+x)\left(\frac{\beta+T+t}{\alpha+T+t}\right)^{r+x}-s_{2} F_{1}\left(r+s+x, r+x ; r+s+x+1 ; \frac{\beta-\alpha}{\beta+T+t}\right) \\
=(r+x)_{2} F_{1}\left(r+s+x, r+x+1 ; r+s+x+1 ; \frac{\beta-\alpha}{\beta+T+t}\right)
\end{gathered}
$$

Using the result ${ }_{2} F_{1}(a, b ; b ; z)=(1-z)^{-a}$, we get

$$
{ }_{2} F_{1}\left(r+s+x, r+x ; r+s+x ; \frac{\beta-\alpha}{\beta+T+t}\right)=\left(\frac{\beta+T+t}{\alpha+T+t}\right)^{r+x},
$$

meaning equivalence implies

$$
\begin{align*}
& s_{2} F_{1}\left(r+s+x, r+x ; r+s+x+1 ; \frac{\beta-\alpha}{\beta+T+t}\right) \\
& \quad+(r+x){ }_{2} F_{1}\left(r+s+x, r+x+1 ; r+s+x+1 ; \frac{\beta-\alpha}{\beta+T+t}\right) \\
& \quad-(r+s+x)_{2} F_{1}\left(r+s+x, r+x ; r+s+x ; \frac{\beta-\alpha}{\beta+T+t}\right)=0, \tag{26}
\end{align*}
$$

which we see from (25) is true. Therefore (16) (evaluated at $x^{*}=0$) and (21) are also equivalent when $\alpha<\beta$.

References

Abramowitz, Milton and Irene A. Stegun (eds.) (1972), Handbook of Mathematical Functions, New York: Dover Publications.

Fader, Peter S. and Bruce G. S. Hardie (2005), "A Note on Deriving the Pareto/NBD Model and Related Expressions," http://brucehardie.com/notes/009/.

Fader, Peter S. and Bruce G. S. Hardie (2006), "Deriving an Expression for $P(X(t)=x)$ Under the Pareto/NBD Model," http://brucehardie.com/notes/012/.

[^0]: ${ }^{\dagger}$ © 2014 Peter S. Fader and Bruce G. S. Hardie.
 This document can be found at http://brucehardie.com/notes/028/.

[^1]: ${ }^{1}{ }_{2} F_{1}(a, b ; c ; z)=\frac{1}{B(b, c-b)} \int_{0}^{1} t^{b-1}(1-t)^{c-b-1}(1-z t)^{-a} d t, c>b$.

