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1 Introduction

Fader et al. (2005) present an expression for P(X(¢) = x) given the as-
sumptions of the BG/NBD model, where the random variable X (¢) denotes
the number of transactions observed in the time interval (0, t]. In this note
we derive an expression for P(X (¢t,t+ s) = x), where the random variable
X (t,t+ s) denotes the number of transactions observed in the time interval
(t,t+ s].

In Section 2 we review the assumptions underlying the BG/NBD model.
In Section 3, we derive an expression for P(X (¢,t + s) = x) conditional on
the individual’s latent characteristics A and p; this conditioning is removed
in Section 4.

2 Model Assumptions

The BG/NBD model is based on the following six assumptions:

i) A customer’s relationship with the firm has two phases: they are
“alive” for an unobserved period of time, then “dead.”

ii) While alive, the number of transactions made by a customer follows a
Poisson process with transaction rate A. This is equivalent to assuming
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that the time between transactions is distributed exponential with
transaction rate A

iii) Heterogeneity in \ follows a gamma distribution with pdf

ar/\r—le—)\a

o) ., A>0. (1)
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iv) After any transaction, a customer dies with probability p. Therefore
the point at which the customer dies is distributed across transactions
according to a geometric distribution with pmf

P(die immediately after jth transaction)
=p(l—p)~', j=1,2,3,....

v) Heterogeneity in p follows a beta distribution with pdf
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B 0<p<l. (2)

f(p|a,b):

vi) The transaction rate A and the death probability p vary independently
across customers.

Two consequences of these assumptions are:

a) Conditional on A and p, the probability that a customer is alive at
time ¢t (assuming they were alive at 0) is simply

o (\t Jpo—At
P(alive at t| \,p) = Z(l - p)’%
=0 I
= e WP,

b) The time of the xth transaction is distributed Erlang-z with pdf
/\mtm—l e—)\t

(z—1)!

3 P(X(t,t+ s) = z) Conditional on A and p

Let us first consider the case of x = 0. There are two ways no purchases
could have occurred in the interval (¢,t + s]: the individual was dead at ¢
(with probability 1 — e~*P!) or they were alive at ¢ (with probability e=*Pt)
and made no purchases in that interval (with probability e=**). Therefore,

P(X(t,t4+5) =0|\p)=1—e P 4 WlgAs, (3)



For the case of = > 0, the customer had to be alive at ¢ (with probability
e~Pt). Now the zth purchase obviously occurred in the interval (¢,t + s,
and the time of this purchase is distributed Erlang-x. What we don’t know
whether i) they died after their #th purchase (with probability p(1 — p)*~1)
or ii) remained alive (with probability (1 — p)*) and made no additional
purchases in the remaining time.

i) For the (unobserved) case where the customer dies after the zth pur-
chase, we have
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ii) For the (unobserved) case where the customer remains alive after the
xth purchase, we have
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Combining (3)—(5) gives us the following expression for the probability
of observing x purchases in the interval (¢,t+ s|, conditional on A and p:

T,—As
P(X(t7t+ 3) =T | A,p) = e_Apt(l _p)m%
b

+ 0p—0 [1 — e_Apt}

+ 6450 e Pip(1 — p)=!

r—1 ;
_ 21 —)s As)?
e V(- g S R )
Jj=0 )

We note that this collapses to the basic individual-level BG/NBD pmf
(Fader et al. 2005, equation 4) when ¢ = 0.

4 Removing the Conditioning on A and u

In reality, we never know an individual’s latent characteristics; we therefore
remove the conditioning on A and p by taking the expectation of (6) over
the distributions of A and P:



P(X(t,t+s)==z|r o, a,b)
// X(tt+5) = 2| A p)g(A |, a)g(p| a,b) dAdp.  (7)

Substituting (1), (2), and (6) in (7) gives us

P(X(t,t—l—s) ::E|r,oz,a,b):A1 4 0p=0 A2 + 050 A3 _5m>OZA4j

where
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When solvmg these integrals, we will repeatedly use the result

1
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To derive this result, let ¢ = 1 — p in the LHS of (12), giving us
1
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0
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which, recalling Euler’s integral representation of the Gaussian hypergeo-
metric function (Gradshteyn and Ryzhik 2007, 9.111),
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Substituting (1) and (2) in (8) gives us
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which, recalling (12),
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Substituting (1) and (2) in (9) gives us
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Substituting (1) and (2) in (10) gives us
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Substituting (1) and (2) in (11) gives us
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Bringing everything together, we have
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where

AIZF(T+$)B(a’b+$)< o >T< s >9ﬂ

I(r)z!  B(a,b) \a+t+s/ \a+t+s

X2F1(7"+.:U b+$ a+b+$7a+t+s)

a
Ay =1— <oz—+t> oF1 (7, b5 a4 b; 755)

_Bla+1L,bt+z—1)/ «

As = B(a,b) <a+t> 2P (r b2 —Liat b+ o)
A '_F(r—i—j)B(a—l—l,b—i—:L"—l)( o' >T< s >j
YT ()41 B(a,b) a+t+s/ \a+t+s

><2F1(r—|—j,b—|—:n—1 a+b—|—:137a+t+s).

Noting that o F} (', 5 0) = 1, it is clear that this collapses to the BG/NBD
pmf (Fader et al. 2005, equation 8) when t = 0.
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