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1 Introduction

Fader et al. (2005) present an expression for P (X(t) = x) given the as-

sumptions of the BG/NBD model, where the random variable X(t) denotes
the number of transactions observed in the time interval (0, t]. In this note

we derive an expression for P (X(t, t + s) = x), where the random variable
X(t, t+ s) denotes the number of transactions observed in the time interval

(t, t + s].
In Section 2 we review the assumptions underlying the BG/NBD model.

In Section 3, we derive an expression for P (X(t, t + s) = x) conditional on
the individual’s latent characteristics λ and p; this conditioning is removed
in Section 4.

2 Model Assumptions

The BG/NBD model is based on the following six assumptions:

i) A customer’s relationship with the firm has two phases: they are
“alive” for an unobserved period of time, then “dead.”

ii) While alive, the number of transactions made by a customer follows a

Poisson process with transaction rate λ. This is equivalent to assuming

† c© 2014 Peter S. Fader, Bruce G. S. Hardie, and Kinshuk Jerath. This document can

be found at <http://brucehardie.com/notes/029/>.
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that the time between transactions is distributed exponential with
transaction rate λ

iii) Heterogeneity in λ follows a gamma distribution with pdf

f(λ | r, α) =
αrλr−1e−λα

Γ(r)
, λ > 0 . (1)

iv) After any transaction, a customer dies with probability p. Therefore

the point at which the customer dies is distributed across transactions

according to a geometric distribution with pmf

P (die immediately after jth transaction)

= p(1 − p)j−1 , j = 1, 2, 3, . . . .

v) Heterogeneity in p follows a beta distribution with pdf

f(p | a, b) =
pa−1(1 − p)b−1

B(a, b)
, 0 ≤ p ≤ 1 . (2)

vi) The transaction rate λ and the death probability p vary independently
across customers.

Two consequences of these assumptions are:

a) Conditional on λ and p, the probability that a customer is alive at

time t (assuming they were alive at 0) is simply

P (alive at t | λ, p) =

∞
∑

j=0

(1− p)j (λt)je−λt

j!

= e−λpt .

b) The time of the xth transaction is distributed Erlang-x with pdf

λxtx−1e−λt

(x − 1)!
.

3 P (X(t, t + s) = x) Conditional on λ and p

Let us first consider the case of x = 0. There are two ways no purchases
could have occurred in the interval (t, t + s]: the individual was dead at t

(with probability 1 − e−λpt) or they were alive at t (with probability e−λpt)

and made no purchases in that interval (with probability e−λs). Therefore,

P (X(t, t + s) = 0 | λ, p) = 1 − e−λpt + e−λpte−λs . (3)
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For the case of x > 0, the customer had to be alive at t (with probability
e−λpt). Now the xth purchase obviously occurred in the interval (t, t + s],

and the time of this purchase is distributed Erlang-x. What we don’t know
whether i) they died after their xth purchase (with probability p(1− p)x−1)

or ii) remained alive (with probability (1 − p)x) and made no additional
purchases in the remaining time.

i) For the (unobserved) case where the customer dies after the xth pur-
chase, we have

e−λptp(1 − p)x−1

∫ s

0

λxux−1e−λu

(x − 1)!
du

= e−λptp(1− p)x−1

[

1 − e−λs

x−1
∑

j=0

(λs)j

j!

]

. (4)

ii) For the (unobserved) case where the customer remains alive after the

xth purchase, we have

e−λpt(1− p)x

∫ s

0

λxux−1e−λu

(x − 1)!
e−λ(s−u)du

= e−λpt(1 − p)xλxe−λs

∫ s

0

ux−1

(x − 1)!
du

= e−λpt(1 − p)x (λs)xe−λs

x!
. (5)

Combining (3)–(5) gives us the following expression for the probability

of observing x purchases in the interval (t, t + s], conditional on λ and p:

P (X(t, t + s) = x | λ, p) = e−λpt(1 − p)x (λs)xe−λs

x!

+ δx=0

[

1 − e−λpt
]

+ δx>0 e−λptp(1− p)x−1

− δx>0 e−λptp(1− p)x−1e−λs

x−1
∑

j=0

(λs)j

j!
. (6)

We note that this collapses to the basic individual-level BG/NBD pmf

(Fader et al. 2005, equation 4) when t = 0.

4 Removing the Conditioning on λ and µ

In reality, we never know an individual’s latent characteristics; we therefore
remove the conditioning on λ and p by taking the expectation of (6) over

the distributions of Λ and P :
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P (X(t, t + s) = x | r, α, a, b)

=

∫ ∞

0

∫ ∞

0

P (X(t, t + s) = x | λ, p)g(λ | r, α)g(p | a, b) dλ dp . (7)

Substituting (1), (2), and (6) in (7) gives us

P (X(t, t + s) = x | r, α, a, b) = A1 + δx=0 A2 + δx>0 A3 − δx>0

x−1
∑

j=0

A4j

where

A1 =
sx

x!

∫ 1

0

∫ ∞

0
(1 − p)xλxe−λ(s+pt)g(λ | r, α) g(p | a, b) dλ dp (8)

A2 = 1 −

∫ 1

0

∫ ∞

0
e−λptg(λ | r, α) g(p | a, b) dλ dp (9)

A3 =

∫ 1

0

∫ ∞

0
p(1− p)x−1e−λptg(λ | r, α) g(p | a, b) dλ dp (10)

A4j =
sj

j!

∫ 1

0

∫ ∞

0
p(1 − p)x−1λje−λ(s+pt)g(λ | r, α) g(p | a, b) dλ dp (11)

When solving these integrals, we will repeatedly use the result
∫ 1

0
pa(1− p)b(c + dp)−e dp

=
B(a + 1, b + 1)

(c + d)e 2F1

(

e, b + 1; a + b + 2; d
c+d

)

. (12)

To derive this result, let q = 1 − p in the LHS of (12), giving us
∫ 1

0
qb(1 − q)a(c + d − dq)−e dq

= (c + d)−e

∫ 1

0
qb(1− q)a

(

1 − d
c+d

q
)−e

dq

which, recalling Euler’s integral representation of the Gaussian hypergeo-

metric function (Gradshteyn and Ryzhik 2007, 9.111),

=
B(a + 1, b + 1)

(c + d)e 2F1

(

e, b + 1; a + b + 2; d
c+d

)

. (13)

Substituting (1) and (2) in (8) gives us

A1 =
sx

x!

∫ 1

0

{
∫ ∞

0

αrλr+x−1e−λ(α+s+pt)

Γ(r)
dλ

}

pa−1(1− p)b+x−1

B(a, b)
dp

=
Γ(r + x)

Γ(r)x!

αrsx

B(a, b)

∫ 1

0
pa−1(1− p)b+x−1(α + s + pt)−(r+x) dp
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which, recalling (12),

=
Γ(r + x)

Γ(r)x!

B(a, b + x)

B(a, b)

( α

α + t + s

)r( s

α + t + s

)x

× 2F1

(

r + x, b + x; a + b + x; t
α+t+s

)

.

Substituting (1) and (2) in (9) gives us

A2 = 1 −

∫ 1

0

{
∫ ∞

0

αrλr−1e−λ(α+pt)

Γ(r)
dλ

}

pa−1(1− p)b−1

B(a, b)
dp

= 1 −
αr

B(a, b)

∫ 1

0

pa−1(1− p)b−1(α + pt)−r dp

= 1 −
( α

α + t

)r

2F1

(

r, b; a+ b; t
α+t

)

.

Substituting (1) and (2) in (10) gives us

A3 =

∫ 1

0

{
∫ ∞

0

αrλr−1e−λ(α+pt)

Γ(r)
dλ

}

pa(1− p)b+x−2

B(a, b)
dp

=
αr

B(a, b)

∫ 1

0
pa(1− p)b+x−2(α + pt)−r) dp

=
B(a + 1, b + x − 1)

B(a, b)

( α

α + t

)r

2F1

(

r, b + x − 1; a + b + x; t
α+t

)

.

Substituting (1) and (2) in (11) gives us

A4j =
sj

j!

∫ 1

0

{
∫ ∞

0

αrλr+j−1e−λ(α+s+pt)

Γ(r)
dλ

}

pa(1− p)b+x−2

B(a, b)
dp

=
Γ(r + j)

Γ(r)j!

αrsj

B(a, b)

∫ 1

0
pa(1 − p)b+x−2(α + s + pt)−(r+j) dp

=
Γ(r + j)

Γ(r)j!

B(a + 1, b + x − 1)

B(a, b)

( α

α + t + s

)r( s

α + t + s

)j

× 2F1

(

r + j, b + x − 1; a + b + x; t
α+t+s

)

.

Bringing everything together, we have

P (X(t, t + s) = x | r, α, a, b) = A1 + δx=0 A2 + δx>0 A3 − δx>0

x−1
∑

j=0

A4j (14)
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where

A1 =
Γ(r + x)

Γ(r)x!

B(a, b + x)

B(a, b)

( α

α + t + s

)r( s

α + t + s

)x

× 2F1

(

r + x, b + x; a + b + x; t
α+t+s

)

A2 = 1 −
( α

α + t

)r

2F1

(

r, b; a+ b; t
α+t

)

A3 =
B(a + 1, b + x − 1)

B(a, b)

( α

α + t

)r

2F1

(

r, b + x − 1; a + b + x; t
α+t

)

A4j =
Γ(r + j)

Γ(r)j!

B(a + 1, b + x − 1)

B(a, b)

( α

α + t + s

)r( s

α + t + s

)j

× 2F1

(

r + j, b + x − 1; a + b + x; t
α+t+s

)

.

Noting that 2F1

(

·, ·; ·; 0
)

= 1, it is clear that this collapses to the BG/NBD

pmf (Fader et al. 2005, equation 8) when t = 0.
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