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1 Introduction

The Pareto distribution of the second kind, hereafter P(II), is a robust distri-

bution for modelling duration times / timing data when the event of interest
occurs in continuous time.1 Its pdf is

f(t | r, α) =
r

α

(

α

α + t

)r+1

(1)

and its cdf is

F (t | r, α) = 1−

(

α

α + t

)r

. (2)

One way of “generating” the P(II) is as a gamma-mixture of exponen-

tials. That is, individual duration times are distributed exponential with
rate parameter λ and heterogeneity in λ is captured by a gamma distribu-
tion with shape parameter r and scale parameter α.

In this note we explore some issues associated with fitting the P(II) to
single-event timing data using maximum likelihood estimation.

2 Starting Point

In our teaching, we typically introduce the P(II) distribution as a model
for the trial purchasing of a new FMCG product called Kiwi Bubbles. The

∗ c© 2020 Peter S. Fader and Bruce G. S. Hardie. This document and the associated
spreadsheet can be found at http://brucehardie.com/notes/038/.

1It is also used to model other non-negative (continuous) quantities, such as income.
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associated data are given in Table 1, which documents the cumulative num-
ber of households (from a panel of 1499 households) that have made a trial

purchase by the end of each week over the first 24 weeks the product is in
a test market.2 (The event of interest is time at which a household makes

their first-ever (i.e., trial) purchase of the new product.)

Week # Households Week # Households

1 8 13 68
2 14 14 72
3 16 15 75
4 32 16 81
5 40 17 90
6 47 18 94
7 50 19 96
8 52 20 96
9 57 21 96

10 60 22 97
11 65 23 97
12 67 24 101

Table 1: Cumulative number of households that have made a trial purchase

by the end of Weeks 1–24.

What we have are grouped, interval-censored data. Interval-censored,
because we do not know exactly when the trial purchase occurred; we only

know the interval (i.e., week) within which it occurred. Grouped, because we
do not observe each household’s time; we simply know how many households

made a trial purchase in any given interval.
Let nt be the number of households that made a trial purchase in week

t. Given the grouped, interval-censored nature of the data, we fit the P(II)

distribution to the data using the following log-likelihood function:

LL(r, α | data) =
24
∑

t=1

nt ln
[

F (t | r, α)− F (t − 1 | r, α)
]

+
{

1499−

24
∑

t=1

nt

}

ln[S(24 | r, α)] . (3)

With reference to the worksheet Grouped data in the Excel workbook

musings on pareto-ii parameter estimation.xlsx, the maximum value
of the log-likelihood function is LL = −681.373, which occurs at r̂ = 0.050

and α̂ = 7.973.

2See Fader et al. (2003) and Hardie et al. (1998) for a discussion of models for forecasting
new product trial.
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3 Individual-level, Interval-censored Data

Table 1 is actually a summary of the household-level data given in the work-

sheet Raw Data (I). For each of the 1499 households in the panel, we see
whether or not they made a trial purchase in the first 24 weeks and, if so,

the week in which they made their trial purchase.
In the workbook Raw Data (Ia), we create two new variables:
ti = the week of purchase if we observe a trial purchase in the

24-week observation period, and 24 (i.e., the time at which

right-censoring occurs) if we do not observe a trial
purchase in that time period, and

δi = 1 if we observe the trial purchase, 0 otherwise (i.e., it is a
right-censored observation).

Given data of this form, we fit the P(II) distribution to the data using

the following log-likelihood function:

LL(r, α | data) =

1499
∑

i=1

δi ln
[

F (ti | r, α)− F (ti − 1 | r, α)
]

+ (1− δi) ln[S(24 | r, α)] . (4)

We code this up in the worksheet Interval censored (week){week}.
As would be expected, the results are exactly the same as those obtained in

Grouped data.

4 What If We Know Actual Event Times?

In many situations, the data are not interval-censored; we do know the time
at which the event of interest (in this case, the first purchase) occurred for

each household.
Suppose we know that the event occurred at ti. What is the appropriate

form of the likelihood function?
Following Pawitan (2001, pp. 23–24), we recognize that there is limited

precision in our measurement of ti; saying that the event occurred at ti is
really saying that the event occurred in the interval (ti − ε/2, ti + ε/2]. The

associated contribution to the likelihood function is given by

F (ti + ε/2) − F (ti − ε/2) =

∫ ti+ε/2

ti−ε/2

f(u)du

which, recalling basic concepts of calculus,

≈ ε f(ti) .

For the purpose of finding the values of the model parameters that max-

imize the value of the likelihood function, ε is a constant and can be ignored.
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Returning to our dataset on trial purchasing, we actually also know the
day on which the trial purchase occurred —see the worksheet Raw Data

(II). We create (ti, δi) in the worksheet Raw Data (IIa). Note that a
purchase on day 3 of week 5 occurs at t = 4 + 3/7 = 4.429 weeks (assuming

that week is the underlying unit of time).
If we treat ti as the actual time at which the trial purchase occurred (i.e.,

it is not an interval-censored observation), we can replace the F (ti | r, α)−
F (ti − 1 | r, α) term in (4) with f(ti | r, α), giving us

LL(r, α | data) =

1499
∑

i=1

δi ln[f(ti | r, α)]+ (1 − δi) ln[S(24 | r, α)] . (5)

This is coded up in the worksheet "Actual" time {week} and we find

that the maximum value of the log-likelihood function is LL = −682.441,
which occurs at r̂ = 0.054 and α̂ = 9.154.

Comparing these results to those obtained using the interval-censored

data, it is not surprising that the parameters are slightly different. What
may come as a surprise is the similarity of the values of the log-likelihood

functions. Why is this the case?
In order for the two log-likelihoods to be of similar value, it must be the

case that f(ti) ≈ F (dtie)−F (dtie−1) (where the ceiling function dxe is the
smallest integer greater than or equal to x). Would we expect this to be the

case?
In Figure 1, we plot f(t) along with the probabilities of a trial purchase

occurring in each week —both computed using the parameter estimates from
interval-censored dataset—and note that f(t) ≈ F (dte) − F (dte − 1). This
explains the similar log-likelihood function values.
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Figure 1: Plot of f(t) (t ∈ (0, 24]) and F (t)−F (t−1) (t = 1, 2, . . . , 24) for
r = 0.050 and α = 7.973.
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5 Is “Actual” Actual?

The reader may be asking whether we can truly treat the day of purchase

as the actual time. Shouldn’t it be treated as interval-censored data, albeit
with a smaller interval of one day (as opposed to one week)? This would see

us fitting the model to the data using the following log-likelihood function:

LL(r, α | data) =

1499
∑

i=1

δi ln
[

F (ti | r, α)− F (ti − 1/7 | r, α)
]

+ (1 − δi) ln[S(24 | r, α)] . (6)

We code this up in the worksheet Interval censored (day){week}
and find that the maximum value of the log-likelihood function is LL =
−878.497, which occurs at r̂ = 0.052 and α̂ = 8.624. The parameter esti-

mates lie between those obtained using (4) and (5). However, the value of
the log-likelihood function is quite different. Why is this the case?

In Figure 2, we plot f(t) along with the probabilities of a trial purchase
occurring on each day, both computed using the parameter estimates ob-

tained from (6). (For visual clarity, we just consider the first three weeks.)
It is clear that the pdf and the differences in the cdf are no longer nearly

equivalent, which is why the maximized values of (5) and (6) are so different.
But why do we see this gap?
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Figure 2: Plot of f(t) (t ∈ (0, 3]) and F (t) − F (t − 1/7) (t =
1/7, 2/7, . . . , 2 6/7, 3) for r = 0.052 and α = 8.624.

Recall that

F (t) − F (t − ∆t) =

∫ t

t−∆t
f(u)du ≈ f(t)∆t .
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In Figure 1, ∆t = 1, and we observe that the approximation is reasonably
good.3 However Figure 2 reflects a setting where ∆t = 1/7. If we multiply

f(t) by 1/7 —see Figure 3—we note that the approximation is very good.
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Figure 3: Plot of f(t)/7 (t ∈ (0, 3]) and F (t) − F (t − 1/7) (t =
1/7, 2/7, . . . , 2 6/7, 3) for r = 0.052 and α = 8.624.

So, the reason why the value of the log-likelihood function given in (5)

is not the same as that given in (6) is because f(ti) 6≈ F (ti) − F (ti − 1/7).
The f(ti) need to be rescaled by 1/7 for the approximation to hold. Noting

that there are 101 uncensored observations in the dataset, this implies an
adjustment to the log-likelihood function of 101× ln(1/7) = −196.537. The

actual difference is −196.055.

6 Further Explorations

Suppose we change the underlying unit of time from week to day. The three

individual-level-data log-likelihood functions above become

LL(r, α | data) =

1499
∑

i=1

δi ln
[

F (7 × ti | r, α)− F (7 × ti − 7 | r, α)
]

+ (1− δi) ln[S(24× 7 | r, α)] , (7)

LL(r, α | data) =

1499
∑

i=1

δi ln[f(ti | r, α)]

+ (1− δi) ln[S(24× 7 | r, α)] , (8)

3Strictly speaking, Figure 1 compares f(t)×1 with

Z dte

dte−1

f(u)du = F (dte)−F (dte−1) .
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LL(r, α | data) =

1499
∑

i=1

δi ln
[

F (7 × ti | r, α)− F (7 × ti − 1 | r, α)
]

+ (1− δi) ln[S(24× 7 | r, α)] . (9)

We code-up these in the worksheets Interval censored (week){day},

"Actual" time {day}, and Interval censored (day){day}, and summa-
rize the results (along with those given above) in Table 2.

Time unit: Week Time unit: Day

r α LL r α LL

Int. cens. (week) 0.050 7.973 −681.373 0.050 55.808 −681.373
“Actual” 0.054 9.154 −682.441 0.054 64.076 −878.978

Int. cens. (day) 0.052 8.624 −878.497 0.052 60.371 −878.497

Table 2: Estimation results for the three different likelihood function spec-
ifications for two different time scales.

Sure enough, when we change the unit of time to day, the maximum
values of the log-likelihood functions given in (8) and (9) are very close.

And, as expected, the difference in the values of the log-likelihood functions
associated with “actual” times when we change the underlying unit of time

from week to day is 101× ln(1/7) = −196.537.
Comparing the parameter estimates across the two time scales, we see

that the values of r do not change, while the estimates of α change by a
factor of 7 as we go from week to day. This should not be surprising since
α is called a scale parameter.

7 Conclusion

The key lesson is that, when comparing the value of an interval-censored

log-likelihood function with that of one formulated assuming we know the
exact times at which the event of interest occurred, the two log-likelihoods

will be very similar in their values when the underlying unit of time is the
same as the width of the censoring interval. The closeness will depend on
how well f(ti) approximates F (dtie) − F (dtie − 1).

The final point to consider is at what level of coarseness in the data
should we treat time as being interval-censored rather than being a precise

measurement of the actual time at which the event of interest occurred?
A purely pragmatic answer would say that it all depends on how well f(t)

approximates
∫ dte

dte−1

f(u)du = F (dte) − F (dte − 1) ,
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assuming the underlying unit of time is the same as the width of the censor-
ing interval. Another answer would say that it depends on whether you feel

it is appropriate given the time scale associated with the problem behind
the model-building exercise.4 Finally, it worth noting that students without

a strong statistical background tend to find it much easier to make sense of
an interval-censored likelihood function than one that directly includes the

pdf. As such, the choice could be influenced by ease of exposition.
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