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1 Introduction

This note presents a detailed derivation of the various mathematical results pre-
sented in Fader et al. (2005), along with some additional results. As such, it
should be of interest to those students of probability models who are interested in
expanding their math skills beyond those required for simple models such as the
beta-binomial and NBD.

Since the publication of Fader et al. (2005), the notation and terminology used
in our work on latent-attrition models has evolved. In this note we use the notation
and terminology used in the original paper.

2 Model Assumptions

The BG/NBD model is based on the following assumptions (the first two of which
are identical to the corresponding Pareto/NBD assumptions):

i. While active, the number of transactions made by a customer follows a Pois-
son process with transaction rate λ. This is equivalent to assuming that the
time between transactions is distributed exponential with transaction rate λ:

f(tj | tj−1;λ) = λe−λ(tj−tj−1) , tj > tj−1 ≥ 0 .

ii. Heterogeneity in λ follows a gamma distribution with pdf

f(λ | r, α) =
αrλr−1e−λα

Γ(r)
, λ > 0 . (1)

† c© 2019 Peter S. Fader, Bruce G. S. Hardie, and Ka Lok Lee. This document can be found at
http://brucehardie.com/notes/039/.

1



iii. After any transaction, a customer becomes inactive with probability p. There-
fore the point at which the customer “drops out” is distributed across trans-
actions according to a (shifted) geometric distribution with pmf

P (inactive immediately after jth transaction)

= p(1− p)j−1 , j = 1, 2, 3, . . . .

We assume that a customer is alive at the beginning of the observation period.
Therefore, a customer cannot “die” before he makes his first transaction.

iv. Heterogeneity in p follows a beta distribution with pdf

f(p | a, b) =
pa−1(1− p)b−1

B(a, b)
, 0 ≤ p ≤ 1 , (2)

where B(a, b) is the beta function, which can be expressed in terms of gamma
functions: B(a, b) = Γ(a)Γ(b)/Γ(a+ b).

v. The transaction rate λ and the dropout probability p vary independently
across customers.

3 Model Development at the Individual Level

3.1 Derivation of the Likelihood Function

Consider a customer making x transactions in the the time interval (0, T ] with the
transactions occurring at t1, t2, . . . , tx:

-· · · · · ·
0 T

×
t1

×
t2

×
tx

We derive the individual-level likelihood function in the following manner:

• the likelihood of the first transaction occurring at t1 is the standard expo-
nential likelihood component, which equals λe−λt1 .

• the likelihood of the second transaction occurring at t2 is the probability of
not dying at t1 times the standard exponential likelihood component, which
equals (1− p)λe−λ(t2−t1).
. . .

• the likelihood of the xth transaction occurring at tx is the probability of not
dying at tx−1 times the standard exponential likelihood component, which
equals (1− p)λe−λ(tx−tx−1).

• the likelihood of observing zero purchases in (tx, T ] is the probability the
customer died at tx, plus the probability he survived and made no purchases
in this interval, which equals p+ (1− p)e−λ(T−tx).
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Therefore,

L(λ, p | t1, t2, . . . , tx, T ) = λe−λt1(1− p)λe−λ(t2−t1) · · · (1− p)λe−λ(tx−tx−1)

×
{
p+ (1− p)e−λ(T−tx)

}
= p(1− p)x−1λxe−λtx + (1− p)xλxe−λT .

We note that information on when each of the x transactions occurred is not
required; a sufficient summary of the customer’s purchase history is (X = x, tx, T ).

What about the case of a customer making no purchases in (0, T ]? Given our
assumption that the customer was alive at the beginning of the observation period,
the associated likelihood function is the exponential survival function:

L(λ |X = 0, T ) = e−λT .

We can therefore write the individual-level likelihood function as

L(λ, p |X = x, T ) = (1− p)xλxe−λT + δx>0 p(1− p)x−1λxe−λtx , (3)

where δx>0 = 1 if x > 0, 0 otherwise.

3.2 Derivation of P (X(t) = x)

Let the random variable X(t) denote the number of transactions occurring in a
time period of length t (with a time origin of 0). To derive an expression for
P (X(t) = x), we recall the fundamental relationship between inter-transaction
times and the number of transactions,

X(t) ≥ x⇔ Tx ≤ t ,

where Tx is the random variable denoting the time of the xth transaction. This
implies

P (X(t) = x) = P (X(t) ≥ x)− P (X(t) ≥ x+ 1)

= P (Tx ≤ t)− P (Tx+1 ≤ t) .

Given our assumption regarding the nature of the death process,

P (X(t) = x) = P (alive after xth purchase)× P (Tx ≤ t and Tx+1 > t)

+ δx>0 × P (dies after xth purchase)× P (Tx ≤ t) .

Given the assumption of exponentially distributed inter-transaction times, the sec-
ond term above is simply the Poisson probability that X(t) = x and the final term
is the Erlang-x cdf. Therefore

P (X(t) = x |λ, p)

= (1− p)x (λt)xe−λt

x!
+ δx>0 p(1− p)x−1

[
1− e−λt

x−1∑
j=0

(λt)j

j!

]
. (4)
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As a useful exercise in mathematics, let us prove to ourselves that this expres-
sion is indeed a pmf. To do so, we need to show that

∞∑
x=0

P (X(t) = x |λ, p) = 1 .

Recalling (4), we can write

∞∑
x=0

P (X(t) = x |λ, p) = A + B

where

A =
∞∑
x=0

(1− p)x (λt)xe−λt

x!
, and

B =
∞∑
x=1

p(1− p)x−1
[
1− e−λt

x−1∑
j=0

(λt)j

j!

]
.

• Rearranging the terms in A, we have

A = e−λpt
∞∑
x=0

[λ(1− p)t]xe−λ(1−p)t

x!

which, since the summand is a Poisson pmf with mean λ(1−p)t and the sum
therefore equals 1,

= e−λpt .

• The trick to solving B is to recognize that the bracketed term in the summand
is the Erlang-x cdf and to replace it with the associated integral representa-
tion:

B =
∞∑
x=1

p(1− p)x−1
∫ t

0

λxux−1e−λu

(x− 1)!
du

=

∫ t

0
λp

{ ∞∑
x=1

[λ(1− p)u]x−1e−λu

(x− 1)!

}
du

=

∫ t

0
λpe−λpu

{ ∞∑
y=0

[λ(1− p)u]ye−λ(1−p)u

y!

}
du

which, since the summand is a Poisson pmf,

=

∫ t

0
λpe−λpu du

= 1− e−λpt .

• Since A + B = 1, we can say that (4) is a pmf.
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3.3 Derivation of P (alive at t)

Given the model assumptions, how can a customer be alive at time t? They
made no purchases in the time interval (0, t]. Or they made only one purchase
and survived the flip of the “death” coin. Or they made only two purchases and
survived the two flips of the “death” coin. And so on. Therefore, conditional on λ
and p, the probability that a customer is alive at time t is simply

P (alive at t |λ, p) =
∞∑
j=0

(1− p)j (λt)je−λt

j!

= e−λpt
∞∑
j=0

(λ(1− p)t)je−λ(1−p)t

j!

which. since the summand is a Poisson pmf,

= e−λpt . (5)

Letting τ denote the time at which the customer dies, we therefore have

P (τ > t |λ, p) = e−λpt .

This implies that the pdf of the death time is given by

g(τ |λ, p) = λpe−λpτ .

(Note that this is dependent on the transaction rate λ. In contrast, the Pareto/NBD
has an exponential death process independent of the transaction rate.)

3.4 Derivation of E[X(t)]

Given that the number of transactions follows a Poisson process,

• if τ , the time at which the customer dies, is greater than t, E[X(t)] is simply
λt.

• if τ ≤ t, the expected number of transactions in (0, τ ] is λτ .

Therefore,

E(X(t) |λ, p) = (λt)P (τ > t) +

∫ t

0
λτg(τ |λ, p)dτ

= λte−λpt + λ2p

∫ t

0
τe−λpτdτ . (6)

Integrating by parts,∫ t

0
τe−λpτdτ =

−τ
λp

e−λpτ
∣∣∣∣t
0

+

∫ t

0

1

λp
e−λpτdτ

= − t

λp
e−λpt +

{
−1

λ2p2
e−λpτ

∣∣∣∣t
0

}
= − t

λp
e−λpt +

1

λ2p2
− 1

λ2p2
e−λpt .
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Substituting this in (6), we get

E(X(t) |λ, p) =
1

p
− 1

p
e−λpt . (7)

An alternative approach to the derivation of this expression is to use first
principles:

E[X(t)] =

∞∑
x=0

xP (X(t) = x) .

As an exercise in mathematics, let’s do this. Recalling (4), we can write

E[X(t) |λ, p] =
∞∑
x=0

xP (X(t) = x |λ, p)

= A + B ,

where

A =
∞∑
x=0

x(1− p)x (λt)xe−λt

x!
, and

B =
∞∑
x=1

xp(1− p)x−1
[
1− e−λt

x−1∑
j=0

(λt)j

j!

]
.

• Rearranging the terms in A, we have

A = e−λpt
∞∑
x=0

x
[λ(1− p)t]xe−λ(1−p)t

x!︸ ︷︷ ︸
∗

.

Since ∗ is a Poisson pmf with mean λ(1− p)t, the sum gives us the mean of
this Poisson distribution. Therefore,

A = λ(1− p)te−λpt .

• Recognizing that the bracketed term in the summand of B is the Erlang-x
cdf, and replacing it with the associated integral representation,

B =

∞∑
x=1

xp(1− p)x−1
∫ t

0

λxux−1e−λu

(x− 1)!
du

=

∫ t

0
λp

{ ∞∑
x=1

x
[λ(1− p)u]x−1e−λu

(x− 1)!

}
du

=

∫ t

0
λpe−λpu

{ ∞∑
y=0

(y + 1)
[λ(1− p)u]ye−λ(1−p)u

y!

}
du
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which, recognizing that the bracketed term is E(Y )+1 where Y is distributed
Poisson with mean λ(1− p)u,

=

∫ t

0
λpe−λpu[λ(1− p)u+ 1] du

= B1 + B2 .

where

B1 =

∫ t

0
λ2p(1− p)ue−λpu du and B2 =

∫ t

0
λpe−λpu du .

• Now

B1 =
1− p
p

∫ t

0
(λp)2ue−λpu du

which, recognizing that the integrand is an Erlang-2 pdf,

=

(
1

p
− 1

)[
1− e−λpt(1 + λpt)

]
.

• Turning to B2,

B2 =

∫ t

0
λpe−λpu du

= 1− e−λpt .

• It follows that

A + B1 + B2 =
1

p
− 1

p
e−λpt

which is the expression for E(X(t) |λ, p) given in (7).

4 Moving to a Randomly Chosen Individual

All the expressions developed above are conditional on the transaction rate λ and
the death probability p, both of which are unobserved. To arrive at the equiva-
lent expressions for a randomly chosen customer, we take the expectation of the
individual-level results over the distributions of λ and p.

Before doing this, let us note the following two results:∫ ∞
0

λje−λt
αrλr−1e−λα

Γ(r)
dλ =

Γ(r + j)αr

Γ(r)(α+ t)r+j
, (8)

and ∫ 1

0
pj(1− p)k p

a−1(1− p)b−1

B(a, b)
dp =

B(a+ j, b+ k)

B(a, b)
. (9)
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4.1 Derivation of the Likelihood Function

The likelihood function for a randomly chosen customer with purchase history
(X = x, tx, T ) is given by

L(r, α, a, b |X = x, tx, T )

=

∫ 1

0

∫ ∞
0

L(λ, p |X = x, tx, T )f(λ | r, α)f(p | a, b)dλdp . (10)

Substituting (1), (2), and (3) in (10), and recalling (8) and (9), we have

L(r, α, a, b |X = x,tx, T ) =
B(a, b+ x)

B(a, b)

Γ(r + x)αr

Γ(r)(α+ T )r+x

+ δx>0
B(a+ 1, b+ x− 1)

B(a, b)

Γ(r + x)αr

Γ(r)(α+ tx)r+x
. (11)

4.2 Derivation of P (X(t) = x)

For a randomly chosen customer,

P (X(t) = x | r, α, a, b) =

∫ 1

0

∫ ∞
0

P (X(t) = x |λ, p)f(λ | r, α)f(p | a, b)dλ dp . (12)

Substituting (1), (2), and (4) in (12), and recalling (8) and (9), we have

P (X(t) = x|r, α, a, b)

=
B(a, b+ x)

B(a, b)

Γ(r + x)

Γ(r)x!

(
α

α+ t

)r( t

α+ t

)x
+ δx>0

B(a+ 1, b+ x− 1)

B(a, b)

×

[
1−

(
α

α+ t

)r{ x−1∑
j=0

(Γ(r + j)

Γ(r)j!

(
t

α+ t

)j}]
. (13)

4.3 Derivation of P (alive at t)

For a randomly chosen customer

P (alive at t | r, α, a, b) =

∫ 1

0

∫ ∞
0

P (alive at t |λ, p)f(λ | r, α)f(p | a, b)dλ dp . (14)

Substituting (1), (2), and (5) in (14), we have

P (alive at t | r, α, a, b) =

∫ 1

0

∫ ∞
0

e−λpt
αrλr−1e−λα

Γ(r)

pa−1(1− p)b−1

B(a, b)
dλdp

=

∫ 1

0

{∫ ∞
0

αrλr−1e−λ(α+pt)

Γ(r)
dλ

}
pa−1(1− p)b−1

B(a, b)
dp

=
αr

B(a, b)

∫ 1

0
pa−1(1− p)b−1(α+ pt)−rdp
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which, letting q = 1− p (which implies dp = −dq),

=
αr

B(a, b)

∫ 1

0
qb−1(1− q)a−1(α+ t− qt)−rdq

=

(
α

α+ t

)r 1

B(a, b)

∫ 1

0
qb−1(1− q)a−1

(
1− t

α+tq
)−r

dq .

Recalling Euler’s integral for the Gaussian hypergeometric function,

2F1(a, b; c; z) =
1

B(b, c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−adt , c > b ,

we have

P (alive at t | r, α, a, b) =

(
α

α+ t

)r
2F1

(
r, b; a+ b; t

α+t

)
. (15)

4.4 Derivation of E[X(t)]

To arrive at an expression for E[X(t)] for a randomly chosen customer, we need
to take the expectation of (7) over the distributions of λ and p. First we take the
expectation with respect to λ, giving us

E(X(t) | r, α, p) =
1

p
− αr

p(α+ pt)r
.

The next step is to take the expectation of this over the distribution of p. We
first evaluate ∫ 1

0

1

p

pa−1(1− p)b−1

B(a, b)
dp =

B(a− 1, b)

B(a, b)

=
a+ b− 1

a− 1
.

Next, we evaluate∫ 1

0

αr

p(α+ pt)r
pa−1(1− p)b−1

B(a, b)
dp

=
αr

B(a, b)

∫ 1

0
pa−2(1− p)b−1(α+ pt)−rdp

which, letting q = 1− p (which implies dp = −dq),

=
αr

B(a, b)

∫ 1

0
qb−1(1− q)a−2(α+ t− qt)−rdq

=

(
α

α+ t

)r 1

B(a, b)

∫ 1

0
qb−1(1− q)a−2

(
1− t

α+tq
)−r

dq

which, recalling Euler’s integral for the Gaussian hypergeometric function,

=

(
α

α+ t

)r B(a− 1, b)

B(a, b)
2F1

(
r, b; a+ b− 1; t

α+t

)
.
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It follows that

E(X(t) | r, α, a, b)

=
a+ b− 1

a− 1

[
1−

(
α

α+ t

)r
2F1

(
r, b; a+ b− 1; t

α+t

)]
. (16)

5 Making Conditional Predictions

In order for the BG/NBD model to be of greatest use in a forward-looking customer-
base analysis exercise, we need to derive expressions for i) the probability that an
individual with observed behavior (X = x, tx, T ) is still active at time T , and ii) the
expected number of transactions in a future period of length t for an individual
with observed behavior (X = x, tx, T ). We now derive the expressions for these
quantities, along with an expression for the probability of making y purchases in
a future time period given the observed past behavior.

5.1 Derivation of P (alive at T |X = x, tx, T )

Given the (implicit) model assumption that a customer cannot die before he has
made any transactions,

P (alive at T |X = 0, T, r, α, a, b) = 1 .

For the case where purchases were made in (0, T ], the probability that a cus-
tomer with purchase history (X = x, tx, T ) is alive at T , conditional on λ and p, is
simply the probability that he did not die at tx and made no purchase in (tx, T ],
divided by the probability of making no purchases in this same period. Recalling
that this second probability is simply the probability that the customer died at tx,
plus the probability he survived and made no purchases in this interval, we have

P (alive at T |X = x, tx, T, λ, p) =
(1− p)e−λ(T−tx)

p+ (1− p)e−λ(T−tx)
.

Multiplying this by [(1− p)x−1λxe−λtx ]/[(1− p)x−1λxe−λtx ] gives us

P (alive at T |X = x, tx, T, λ, p) =
(1− p)xλxe−λT

L(λ, p |X = x, tx, T )
, (17)

where the expression for L(λ, p |X = x, tx, T ) is given in (3). (Note that when
x = 0, the expression given in (17) equals 1.)

As the transaction rate λ and death probability p are unobserved, we compute
P (alive |X = x, tx, T ) for a randomly chosen customer by taking the expectation
of (17) over the (joint) distribution of λ and p, updated to take account of the
information (X = x, tx, T ):

P (alive at T |X = x, tx, T, r, α, a, b)

=

∫ 1

0

∫ ∞
0

{
P (alive at T |X = x, tx, T, λ, p)

× f(λ, p | r, α, a, b,X = x, tx, T )
}
dλ dp . (18)

10



By Bayes theorem, the joint posterior distribution of λ and p is given by

f(λ, p | r, α, a, b,X = x, tx, T ) =
L(λ, p |X = x, tx, T )f(λ | r, α)f(p | a, b)

L(r, α, a, b |X = x, tx, T )
. (19)

Substituting (17) and (19) in (18), we get

P (alive at T |X = x, tx, T, r, α, a, b) =
1

L(r, α, a, b |X = x, tx, T )

×
∫ 1

0

∫ ∞
0

(1− p)xλxe−λT f(λ | r, α)f(p | a, b)dλ dp . (20)

Now, ∫ 1

0

∫ ∞
0

(1− p)xλxe−λT f(λ | r, α)f(p | a, b)dλ dp

=

{∫ 1

0
(1− p)xf(p | a, b)dp

}{∫ ∞
0

λxe−λT f(λ | r, α)dλ

}
which, recalling (8) and (9),

=
B(a, b+ x)

B(a, b)

Γ(r + x)αr

Γ(r)(α+ T )r+x
(21)

Substituting (11) and (21) in (20) and simplifying, we get

P (alive at T |X = x, tx, T, r, α, a, b)

= 1

/[
1 + δx>0

a

b+ x− 1

(
α+ T

α+ tx

)r+x]
. (22)

5.2 Derivation of E(Y (t) |X = x, tx, T )

Let the random variable Y (t) denote the number of purchases made in (T, T + t].
We are interested in computing the conditional expectation E(Y (t) |X = x, tx, T ),
the expected number of purchases in (T, T+t] for a customer with purchase history
(X = x, tx, T ).

If the customer is alive at T , it follows from (7) that

E(Y (t) |λ, p) =
1

p
− 1

p
e−λpt . (23)

Multiplying this expression by the probability that a customer with purchase his-
tory (X = x, tx, T ) is alive at T , (17), gives us

E(Y (t) |X = x, tx, T, λ, p)

=
(1− p)xλxe−λT

(
1
p −

1
pe
−λpt

)
L(λ, p |X = x, tx, T )

=
p−1(1− p)xλxe−λT − p−1(1− p)xλxe−λ(T+pt)

L(λ, p |X = x, tx, T )
. (24)
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(Note that this reduces to (23) when x = 0, which follows from the assumption
that a customer who made zero purchases in (0, T ] is alive at time T .)

As the transaction rate λ and death probability p are unobserved, we compute
E(Y (t) |X = x, tx, T ) for a randomly chosen customer by taking the expectation
of (24) over the posterior distribution of λ and p:

E(Y (t) |X = x, tx, T, r, α, a, b)

=

∫ 1

0

∫ ∞
0

E(Y (t) |X = x, tx, T, λ, p)f(λ, p | r, α, a, b,X = x, tx, T )dλ dp . (25)

Substituting (19) and (24) in (25), we get

E(Y (t) |X = x, tx, T, r, α, a, b) =
A− B

L(r, α, a, b |X = x, tx, T )
, (26)

where

A =

∫ 1

0

∫ ∞
0

p−1(1− p)xλxe−λT f(λ | r, α)f(p | a, b)dλdp , and

B =

∫ 1

0

∫ ∞
0

p−1(1− p)xλxe−λ(T+pt)f(λ | r, α)f(p | a, b)dλdp .

• Recalling (8) and (9),

A =
B(a− 1, b+ x)

B(a, b)

Γ(r + x)αr

Γ(r)(α+ T )r+x
. (27)

• Now,

B =

∫ 1

0

pa−2(1− p)b+x−1

B(a, b)

{∫ ∞
0

αrλr+x−1e−λ(α+T+pt)

Γ(r)
dλ

}
dp

=
Γ(r + x)αr

Γ(r)B(a, b)

∫ 1

0
pa−2(1− p)b+x−1(α+ T + pt)−(r+x)dp

which, letting q = 1− p (which implies dp = −dq),

=
Γ(r + x)αr

Γ(r)B(a, b)

∫ 1

0
qb+x−1(1− q)a−2(α+ T + t− qt)−(r+x)dq

=
Γ(r + x)αr

Γ(r)B(a, b)(α+ T + t)r+x

×
∫ 1

0
qb+x−1(1− q)a−2

(
1− t

α+T+tq
)−(r+x)

dq

which, recalling Euler’s integral for the Gaussian hypergeometric function,

=
B(a− 1, b+ x)

B(a, b)

Γ(r + x)αr

Γ(r)(α+ T + t)r+x

× 2F1

(
r + x, b+ x; a+ b+ x− 1; t

α+T+t

)
. (28)
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Substituting (11), (27) and (28) in (26) and simplifying, we get

E(Y (t) |X = x, tx, T, r, α, a, b) =

a+ b+ x− 1

a− 1

[
1−

(
α+ T

α+ T + t

)r+x
2F1

(
r + x, b+ x; a+ b+ x− 1; t

α+T+t

)]

1 + δx>0
a

b+ x− 1

(
α+ T

α+ tx

)r+x .

(29)

5.3 Derivation of P (Y (t) = y |X = x, tx, T )

Finally, we are interested in deriving an expression for the probability of observing
y purchases in the interval (T, T + t] by a customer with purchase history (X =
x, tx, T ).

If the customer is alive at T , it follows from (4) that

P (Y (t) = y |λ, p) = (1− p)y (λt)ye−λt

y!

+ δy>0 p(1− p)y−1
[
1− e−λt

y−1∑
j=0

(λt)j

j!

]
. (30)

On the other hand, if the customer is dead at T ,

P (Y (t) = y |λ, p) =

{
1 if y = 0

0 otherwise
(31)

Multiplying (30) by the probability that a customer with purchase history
(X = x, tx, T ) is alive at T , (17), and (31) by the probability that this same
customer is dead at T (which equals 0 if x = 0), gives us

P (Y (t) = y |X = x, tx, T, λ, p) =

{
δx>0,y=0 p(1− p)x−1λxe−λtx

+ (1− p)x+y λ
x+ytye−λ(T+t)

y!
+ δy>0 p(1− p)x+y−1

×
[
λxe−λT − e−λ(T+t)

y−1∑
j=0

λx+jtj

j!

]}/
L(λ, p |X = x, tx, T ) . (32)

(Note that this reduces to (30) when x = 0, which follows from the assumption
that a customer who made zero purchases in (0, T ] is alive at time T .)

As the transaction rate λ and death probability p are unobserved, we com-
pute P (Y (t) = y |X = x, tx, T ) for a randomly chosen customer by taking the
expectation of (32) over the posterior distribution of λ and p:

P (Y (t) = y |X = x, tx, T, r, α, a, b)

=

∫ 1

0

∫ ∞
0

{
P (Y (t) = y |X = x, tx, T, λ, p)

× f(λ, p | r, α, a, b,X = x, tx, T )
}
dλdp . (33)
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Substituting (19) and (32) in (33), we get

P (Y (t) = y |X = x, tx, T, r, α, a, b) =
δx>0,y=0A + B + δy>0C

L(r, α, a, b |X = x, tx, T )
(34)

where, recalling (1), (2), (8), and (9),

A =

∫ 1

0

∫ ∞
0

p(1− p)x−1λxe−λtxf(λ | r, α)f(p | a, b)dλ dp

=

{∫ 1

0

pa(1− p)b+x−2

B(a, b)
dp

}{∫ ∞
0

αrλr+x−1e−λ(α+tx)

Γ(r)
dλ

}
=
B(a+ 1, b+ x− 1)

B(a, b)

Γ(r + x)

Γ(r)

αr

(α+ tx)r+x
, (35)

and

B =

∫ 1

0

∫ ∞
0

(1− p)x+y λ
x+ytye−λ(T+t)

y!
f(λ | r, α)f(p | a, b)dλ dp

=

{∫ 1

0

pa−1(1− p)b+x+y−1

B(a, b)
dp

}{∫ ∞
0

αrλr+x+y−1tye−λ(α+T+t)

y!Γ(r)
dλ

}
=
B(a, b+ x+ y)

B(a, b)

Γ(r + x+ y)

Γ(r)y!

αrty

(α+ T + t)r+x+y
, (36)

and

C =

∫ 1

0

∫ ∞
0

{
p(1− p)x+y−1

[
λxe−λT − e−λ(T+t)

y−1∑
j=0

λx+jtj

j!

]
× f(λ | r, α)f(p | a, b)

}
dλdp

=

{∫ 1

0

pa(1− p)b+x+y−2

B(a, b)
dp

}{∫ ∞
0

αrλr+x−1e−λ(α+T )

Γ(r)
dλ

−
∫ ∞
0

y−1∑
j=0

αrλr+x+j−1tje−λ(α+T+t)

j!Γ(r)
dλ

}
=
B(a+ 1, b+ x+ y − 1)

B(a, b)

×
{

Γ(r + x)

Γ(r)

αr

(α+ T )r+x
−

y−1∑
j=0

Γ(r + x+ j)

Γ(r)j!

αrtj

(α+ T + t)r+x+j

}
, (37)

and the expression for L(r, α, a, b |X = x, tx, T ) is given in (11).

References

Fader, Peter S., Bruce G. S. Hardie, and Ka Lok Lee (2005), “"Counting Your Cus-
tomers" the Easy Way: An Alternative to the Pareto/NBD Model,” Marketing
Science, 24 (Spring), 275–284.

14


