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1 Introduction

We present an extension to the BG/NBD model (Fader et al. 2005) in which

the timing of transactions is influenced by time-varying covariates. This
note builds on work presented in Huang (2002), and the presentation of the
derivations assumes that the reader is familiar with the BG/NBD model

derivations (Fader et al. 2019).

Preliminaries

• We observe a (new) customer making x + 1 transactions with the

firm at times t0, t1, . . . , tx. By convention, j = 0 corresponds to the
customer’s first-ever transaction with the firm; j > 0 corresponds to

repeat transactions by the customer. The tj are measured in calendar
time with some arbitrary origin, where t0 ≥ 0.

• We are interested in modeling the customer’s repeat buying in the
time interval (t0, T ], where T is the censoring point that corresponds

to the end of the model calibration period. This is typically a fixed
point in calendar time, common across all customers.

† c© 2020 Peter S. Fader, Bruce G. S. Hardie and Chun-Yao Huang. This document can
be found at <http://brucehardie.com/notes/040/>.
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• We assume that the unit of time (e.g., week, month) is chosen such that
it can be assumed that the value of each covariate remains constant

within that unit of time (but will vary over time). Transactions can
occur in fractions of this time period (e.g., day when the unit of time

is week).

• We assume that the calendar time origin is aligned with the start of
the unit of time. For example, if week is the unit of time and we are

working on a calendar where the first day of the week is Sunday, 0
corresponds to midnight Saturday/Sunday.

When individual-level inter-transaction times are iid exponential with

rate parameter λ, it is easy to incorporate the effects of time-varying covari-
ates using the standard proportional hazards framework. We summarise

the basic results presented in Fader et al. (2004), making minor notational
changes.

Let z(t) denote the vector of covariates at time t and β the effects of
these covariates. According to the proportional hazards framework, the
with-covariates hazard function is

h(t | λ, β; z(t)) = λez(t)β′

≡ λA(t) .

It is very important to note that this vector of covariates does not include
an intercept.

The probability that a transaction has not occurred by t, given the last

transaction occurred at tj , is given by the survivor function

S(t | tj; λ, β; Z(t)) = exp
[

−

∫ t

tj

h(u | λ, β; z(u)) du
]

= exp
[

− λ
(∫ t

0
A(u) du−

∫ tj

0
A(u) du

)]

,

where Z(t) represents the covariate path up to time t.

Given our previously stated assumption that the time-varying covariates
remain constant within each unit of time,1

∫ t

0
A(u) du =

btc
∑

i=1

A(i) + (t − btc)A(dte)

≡ C(t) ,

1That is, for t falling in the ith time period (i.e., i − 1 < t ≤ i, i = 1, 2, 3, . . .),
z(t) = z(dte) = z(i).
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where b c is the floor function and d e is the ceiling function. Letting C(tj , t) =
C(t)−C(tj ), we can write the survivor function of the with-covariates inter-

transaction time distribution as

S(t|tj; λ, β; Z(t)) = e−λC(tj ,t) . (1)

Noting that ∂C(tj , t)/∂t = A(dte), it follows that the pdf of the with-

covariates inter-transaction time distribution is

f(t|tj ; λ, β; Z(t)) = λA(dte)e−λC(tj ,t) . (2)

This is equivalent to assuming that transactions can be characterized
by a non-homogeneous Poisson process (NHPP). Let the random variable

X(ta, tb) denote the number of transactions occurring in the time interval
(ta, tb]. It follows that

P (X(ta, tb) = x | λ, β; Z(tb)) =
[λC(ta, tb)]

xe−λC(ta,tb)

x!
(3)

and

E(X(ta, tb) | λ, β; Z(tb)) = λC(ta, tb) . (4)

2 Model Likelihood Function

Recall that the BG/NBD model is based on the following six assumptions:

1. Customers go through two stages in their “lifetime” with a specific

firm: they are “alive” for some period of time, then become perma-
nently inactive (i.e., “die”).

2. While alive, the number of transactions made by a customer follows a
Poisson process with transaction rate λ. This is equivalent to assuming

that the time between transactions is distributed exponential with
transaction rate λ,

f(tj | tj−1; λ) = λe−λ(tj−tj−1) , tj > tj−1 ≥ 0 .

3. Heterogeneity in transaction rates across customers follows a gamma

distribution with shape parameter r and scale parameter α:

g(λ | r, α) =
αrλr−1e−λα

Γ(r)
.
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4. After any (repeat) transaction, a customer dies with probability p.2

Therefore the point at which the customer dies is distributed across

transactions according to a geometric distribution with pmf

P (die immediately after jth transaction)

= p(1 − p)j−1 , j = 1, 2, 3, . . . .

5. Heterogeneity in death probabilities follows a beta distribution with
parameters a and b:

g(p | a, b) =
pa−1(1 − p)b−1

B(a, b)
, 0 < p < 1 .

6. The transaction rate λ and the death probability p vary independently
across customers.

We modify the second assumption, now assuming that inter-transaction
times are distributed according to the with-covariates exponential distribu-

tion, (1) and (2). Following the logic of the derivation presented in Fader et
al. (2005, 2019), it follows that

L(λ, p, β |Z(T ), [t0, . . . , tx]) =
{ x∏

j=1

A(dtje)
}{

(1 − p)xλxe−λC(t0,T )

+ 1x>0 p(1 − p)x−1λxe−λC(t0,tx)
}

. (5)

To remove the conditioning on the unobserved transaction rate and death

probability, we take the expectation of (5) over the distributions of λ and p:

L(r, α,a, b, β |Z(T ), [t0, . . . , tx])

=

∫ 1

0

∫ ∞

0
L(λ, p, β |Z(T )[t0, . . . , tx])g(λ | r, α)g(p | a, b)dλdp

=
{ x∏

j=1

A(dtje)
}Γ(r + x)αr

Γ(r)

{
B(a, b + x)

B(a, b)

(
1

α + C(t0, T )

)r+x

+ 1x>0
B(a + 1, b + x − 1)

B(a, b)

(
1

α + C(t0, tx)

)r+x }

. (6)

2The standard BG/NBD model does not allow for “death” immediately after the first
(trial) transaction. See Batislam et al. (2007, 2008), Hoppe and Wagner (2007), and
Wagner and Hoppe (2008) for a variant of the standard model that allows for this. Harman
(2016) incorporates the effects of time-varying covariates into the transaction process of
this modified BG/NBD model, relying on simulation methods to compute quantities such
as expected sales.
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Note that we now need to know the customer’s entire purchase history,
[t0, . . . , tx]; “recency” and “frequency”’ are no longer sufficient statistics.

When β = 0, A(t) = 1 and C(t) = t. Therefore (6) reduces to the basic
BG/NBD model likelihood when the effects of the time-varying covariates

are “switched off”.3

3 Expected Sales

We wish to derive an expression for E[X(t0, t)], where the random vari-

able X(t0, t) denotes the number of (repeat) transactions made by t for a
customer acquired at t0.

Given that the number of transactions (while alive) follows a NHPP and
recalling (4), E[X(t0, t)] is simply λC(t0, t) if the customer is alive at t. For

a customer who dies at ω ≤ t, the expected number of transactions in the
time interval (t0, ω] is λC(t0, ω).

The probability that a customer acquired at t0 is still alive at ω is

P (Ω > ω | λ, p, β; Z(ω), t0) =

∞∑

j=0

(1 − p)j [λC(t0, ω)]je−λC(t0,ω)

j!

= e−λpC(t0,ω) .

This implies that the pdf of the time at which a customer dies is given by

g(ω | λ, p, β; Z(ω), t0) = λpA(dωe)e−λpC(t0,ω) .

It follows that the expected number of (repeat) transactions occurring

by t for a customer acquired at t0 is given by

E(X(t0, t) | λ, p,β; Z(t)) = λC(t0, t)P (Ω > t | λ, p, β; Z(t), t0)

+

∫ t

t0

λC(t0, ω)g(ω | λ, p, β; Z(ω), t0)dω

=
1

p
−

1

p
e−λpC(t0,t) . (7)

(See the Appendix for details of the derivation.)

3Note that we have not included the effects of time-varying covariates in the death
process. It is not practical to include the effects of covariates, be they time-invariant or
time-varying, into p and then allow for unobserved heterogeneity using the beta distribu-
tion. Anyone wishing to let p be a function of time-varying covariates will have to replace
the BG components of the basic BG/NBD model. (See, for example, Braun et al. (2015),
who use what can be called the G2G+covariates model (Fader and Hardie 2020) to allow
the probability of dying immediately after the jth transaction to be a function of the
characteristics of that transaction.) See Fader and Hardie (2007) for a discussion of how
to incorporate the effects of time-invariant covariates into the death process.
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Taking the expectation of (7) over the distributions of λ and p results
in the following expression for the expected number of transactions in the

time interval (t0, t]:

E(X(t0, t) | r, α, a, b,β; Z(t))

=
a + b − 1

a − 1

[

1 −

(
α

α + C(t0, t)

)r

2F1

(
r, b; a+ b − 1;

C(t0,t)
α+C(t0,t)

)
]

. (8)

When β = 0 (i.e., no covariate effects), C(t0, t) = t − t0. Therefore (8)
reduces to the basic BG/NBD model expression for E[X(t0, t)]. (Note that

t0 = 0 in all the expressions presented in the original paper.)

4 Distribution of Repeat Transactions

In order to derive an expression for P (X(t0, t) = x), we recall the funda-

mental relationship between inter-event times and the number of events:
X(t0, t) ≥ x ⇔ Tx | t0 ≤ t, where Tx | t0 is the random variable denoting the

time of the xth repeat transaction for a customer acquired at t0. Given our
assumption regarding the nature of the death process,

P (X(t) = x) = P (alive after xth transaction) P (Tx ≤ t and Tx+1 > t)

+ 1x>0 P (die after xth transaction)P (Tx ≤ t) .

Now, P (Tx ≤ t and Tx+1 > t) is simply the NHPP probability that

X(t0, t) = x, (3). Noting that Tx |, t0 cannot be less than t if only 0, 1, . . . , x−
2, or x − 1 (repeat) transactions are made in the time interval (to, t],

P (Tx ≤ t) = 1 −

x−1∑

j=0

P (X(t0, t) = j) .

Therefore

P (X(t0, t) = x | λ, p, β; Z(t))

= (1 − p)x [λC(t0, t)]
xe−λC(t0,t)

x!

+ 1x>0 p(1− p)x−1

[

1 − e−λC(t0,t)
x−1∑

j=0

[λC(t0, t)]
j

j!

]

. (9)

Taking the expectation of (9) over the distributions of λ and p results in
the following expression for the distribution of the number of repeat trans-

actions in the time interval (t0, t]:
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P (X(t0, t) = x | r, α, a, b,β; Z(t))

=
B(a, b + x)

B(a, b)

Γ(r + x)

Γ(r)x!

(
α

α + C(t0, t)

)r( C(t0, t)

α + C(t0, t)

)x

+ 1x>0
B(a + 1, b + x − 1)

B(a, b)

[

1 −

(
α

α + C(t0, t)

)r

×

{ x−1∑

j=0

(Γ(r + j)

Γ(r)j!

(
C(t0, t)

α + C(t0, t)

)j}
]

. (10)

When β = 0, this reduces to the basic BG/NBD model expression for
P (X(t0, t) = x).

5 Conditional Expectations

We wish to derive an expression for the expected number of transactions
in the time interval (T, T + ∆t] for a customer with transaction history

[t0, . . . , tx].
If the customer is alive at T (i.e., ω > T ), it follows from (7) that

E(X(T, T + ∆t) | λ, p,β; Z(T + ∆t); ω > T )

=
1

p
−

1

p
e−λpC(T,T+∆t) . (11)

It follows from (5) that

P (Ω > T | λ, p, β; Z(T ), [t0, . . . , tx])

=

{ x∏

j=1

A(dtje)

}

(1 − p)xλxe−λC(t0,T )

L(λ, p, β |Z(T ), [t0, . . . , tx], T )
. (12)

Now, the joint posterior distribution of λ and p for a customer with

transaction history [t0, . . . , tx] is given by

g(λ, p | r, α, a, b,β; Z(T ), [t0, . . . , tx])

=
L(λ, p, β |Z(T ), [t0, . . . , tx])g(λ | r, α) g(p | a, b)

L(r, α, a, b,β |Z(T ), [t0, . . . , tx], T )
. (13)

Integrating the product of (11)–(13) over λ and p (and simplifying) gives
us the following expression for the conditional expectation:
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E(X(T, T + ∆t) | r, α, a, b,β; Z(T + ∆t), [t0, . . . , tx])

=

a + b + x − 1

a − 1
(1 − AB)

1 + 1x>0
a

b + x − 1

(
α + C(t0, T )

α + C(t0, tx)

)r+x , (14)

where

A =

(
α + C(t0, T )

α + C(t0, T + ∆t)

)r+x

and

B = 2F1

(
r + x, b + x; a + b + x − 1; C(T,T+∆t)

α+C(t0,T+∆t)

)
.

When β = 0, this reduces to the basic BG/NBD model expression for
E(X(T, T + ∆t) | x, tx, T ).

6 The Special Case of Seasonal Effects4

In many cases, the desire to incorporate the effects of time-varying covariates
in the BG/NBD model is driven by the need to capture seasonality in sales.

If these seasonal effects are represented by dummy variables (and we have
a small number of “seasons”), it is possible to simplify the model likelihood

function.
To illustrate, suppose we have a “regular season” and a “high season”.

Assuming week is the chosen unit of time, we have one covariate defined as
z(t) = 1 if week dte is in the high season, 0 otherwise. Let Whigh be the set

of weeks (in the calendar year) associated with the high season, and

xhigh =
x∑

j=1

1dtje∈Whigh
,

i.e., the number of purchases made in high-season weeks.

We now have

A(dte) =

{

1 if dte is a regular-season week

ηhigh = exp(β) if dte is a high-season week

= η
1dte∈Whigh

high .

4We thank Dan McCarthy for suggesting this special case.
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It follows that

x∏

j=1

A(dtje) = η
xhigh

high .

We can replace C(t) with

D(t) =

btc
∑

i=1

η
1die∈Whigh

high + (t − btc)η
1dte∈Whigh

high

and C(ta, tb) with D(ta, tb) = D(tb) − D(ta).
The individual-level likelihood function, (5), becomes

L(λ, p, ηhigh |Whigh, t0, tx, x, xhigh, T )

= η
xhigh

high

{

(1− p)xλxe−λD(t0,T ) + 1x>0 p(1− p)x−1λxe−λD(t0,tx)
}

.

If Whigh = ∅, xhigh = 0 and D(t) = t, and this reduces to the basic

BG/NBD individual-level likelihood function.5

It follows that

L(r, α,a, b, ηhigh |Whigh, t0, tx, x, xhigh, T )

= η
xhigh

high

Γ(r + x)αr

Γ(r)

{
B(a, b + x)

B(a, b)

(
1

α + D(t0, T )

)r+x

+ 1x>0
B(a + 1, b + x − 1)

B(a, b)

(
1

α + D(t0, tx)

)r+x }

. (15)

Note that we no longer need to know the customer’s entire purchase his-
tory, “recency” and “frequency” and “number of high-seasion transactions”

are sufficient statistics.
It follows that

E(X(t0, t) | r, α, a, b, ηhigh; Whigh)

=
a + b − 1

a − 1

[

1 −

(
α

α + D(t0, t)

)r

2F1

(
r, b; a+ b − 1; D(t0,t)

α+D(t0,t)

)
]

, (16)

5One way to think about D(t) is as follows. The Poisson mean of a regular-season week
is λ and the Poisson mean of a high-season week is ληhigh. The Poisson mean over the
period (0, t] is λD(t). We can think of D(t) as the equivalent number of “regular” weeks
in (0, t], ranging from t when it contains no high-season weeks to ηhight when all the weeks
in (0, t] are high-season weeks.
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P (X(t0, t) = x | r, α, a, b, ηhigh; Whigh)

=
B(a, b + x)

B(a, b)

Γ(r + x)

Γ(r)x!

(
α

α + D(t0, t)

)r( D(t0, t)

α + D(t0, t)

)x

+ 1x>0
B(a + 1, b + x − 1)

B(a, b)

[

1 −

(
α

α + D(t0, t)

)r

×

{ x−1∑

j=0

Γ(r + j)

Γ(r)j!

(
D(t0, t)

α + D(t0, t)

)j}
]

, (17)

and

E(X(T, T + ∆t) | (r, α, a, b, ηhigh; Whigh; t0, tx, x, xhigh, T )

=

a + b + x − 1

a − 1
(1− AB)

1 + 1x>0
a

b + x − 1

(
α + D(t0, T )

α + D(t0, tx)

)r+x
, (18)

where

A =

(
α + D(t0, T )

α + D(t0, T + ∆t)

)r+x

and

B = 2F1

(
r + x, b + x; a + b + x − 1;

D(T,T+∆t)
α+D(t0,T+∆t)

)
.

This can easily be extended to more seasonal periods. For example,

suppose we have a low season, a regular season, and a high season. We
let Wlow be the set of weeks (in the calendar year) associated with the low

season, and

xlow =
x∑

j=1

1dtje∈Wlow
.

We add an additional parameter ηlow and let

E(t) =

btc
∑

i=1

η
1die∈Wlow

low η
1die∈Whigh

high + (t − btc)η
1dte∈Wlow

low η
1dte∈Whigh

high ,

etc., which leads to

L(λ, p, ηlow, ηhigh |Wlow, Whigh, t0, tx, x, xlow, xhigh, T )

= ηxlow

low η
xhigh

high

{

(1− p)xλxe−λE(t0,T )

+ 1x>0 p(1− p)x−1λxe−λE(t0,tx)
}

,

and so on.
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Appendix

In this appendix, we document the logic for solving the integral associated

with (7) via the following example. In the timeline below, we see that the
customer is acquired in the first time period and t falls in the third time

period:

0

×

t0 1 2 t 3

For this specific example, we can rewrite

E(X(t0, t) | λ, p,β; Z(t)) = λC(t0, t)P (Ω > t | λ, p, β; Z(ω), t0)

+

∫ t

t0

λC(t0, ω)g(ω | λ, p, β; Z(ω), t0)dω

as

E(X(t0, t) | λ, p,β; Z(t)) = A + B + C + D (A1)

where

A = λC(t0, t)e
λpC(t0,t) , (A2)

B =

∫ 1

t0

λC(t0, ω)λpA(dωe)e−λpC(t0,ω)dω , (A3)

C =

∫ 2

1

λC(t0, ω)λpA(dωe)e−λpC(t0,ω)dω ,

D =

∫ t

2

λC(t0, ω)λpA(dωe)e−λpC(t0,ω)dω .

The trick to solving these integrals is integration by parts, which states
that

∫ b

a

u(x)v′(x)dx = u(x)v(x)

∣
∣
∣
∣

b

a

−

∫ b

a

u′(x)v(x)dx .

Let us consider (A2):

B = λ2pA(1)

∫ 1

t0

C(t0, ω)
︸ ︷︷ ︸

u

e−λpC(t0,ω)
︸ ︷︷ ︸

v′

dω

= λ2pA(1)

[

−C(t0, ω)e−λpC(t0,ω)

λpA(dωe)

∣
∣
∣
∣

1

t0

]

− λ2pA(1)

∫ 1

t0

A(dωe)
( −1

λpA(dωe)

)

e−λpC(t0,ω)dω
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which noting that C(t0, t0) = 0,

= −λC(t0, 1)e−λpC(t0,1) − λ2pA(1)

[

e−λpC(t0,ω)

λ2p2A(dωe)

∣
∣
∣
∣

1

t0

]

= −λC(t0, 1)e−λpC(t0,1) +
1

p
−

1

p
e−λpC(t0,1) . (A4)

By similar logic,

C = λC(t0, 1)e−λpC(t0,1) − λC(t0, 2)e−λpC(t0,2)

+
1

p
e−λpC(t0,1) −

1

p
e−λpC(t0,2) (A5)

and

D = λC(t0, 2)e−λpC(t0,2) − λC(t0, t)e
−λpC(t0,t)

+
1

p
e−λpC(t0,2) −

1

p
e−λpC(t0,t) . (A6)

Substituting (A2) and (A4)–(A6) in (A1) gives us (7).
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