An R-based Introduction to Analysing Buyer Behaviour
Using Consumer Panel Data

Bruce G.S. Hardie
April 2023

As its title indicates, An Excel-based Introduction to Analysing Buyer Behaviour Using
Consumer Panel Data (http://brucehardie.com/notes/042/) provides an introduction to
basic analyses of buyer behaviour we can undertake using consumer panel data. All the
analyses are undertaken in Excel. The advantage of using Excel is that it makes the process
completely transparent to all. However, it is not the best environment for repeated
analyses.

The objective of this note is to document how to perform these same analyses using R. It
assumes you have used R, but is written with a relatively new R user in mind.

A few observations before we start:

e Thisis not a standalone document. It is assumed that you have worked through the
Excel note. You should work through the material in this note with the Excel note at
your side.

e When working through this document, do not copy and paste the code. Typing it out
for yourself is part of the learning process.

e Asany user of R quickly learns, there are frequently multiple ways of performing a
particular piece of analysis. The approaches taken here should not be viewed as
definitive.

e We are dealing with two small datasets. No attention has been paid to performance
issues.

e A conscious decision has been made to use base R and not the ‘tidyverse’.l

e A conscious decision has been made to use only the functionality built into base R.
(This includes the functionality of those packages automatically loaded in a standard
installation of R.) Our objective is to learn the logic and “mechanics” of the
calculations. If you find yourself performing these types of analyses on a regular
basis, you will definitely want to write your own functions and/or make use of some
other packages. The data.table package is an obvious choice.

1 See https://matloff.wordpress.com/2022/08/24 /base-r-and-tidyverse-code-side-by-
side/ for a good reflection on the case for focusing on base R for those coming to R without
a coding background.

e All the plots are created using the base graphics system. They are not intended to be
publication ready. We will not use the ggplot2 package as its syntax can be a bit
puzzling if you are a beginner. A good reference on R graphics is

Murrell, Paul (2019), R Graphics, 3rd edn, Boca Raton, FL: CRC Press.

. Given our focus on how to perform the calculations, we will not consider how to
create nicely formatted tables, etc. The numbers that we would choose to reportin a
document will be left in a data frame, matrix, or table.

This document can be found at http://brucehardie.com/notes/043 /. The data files can be
found at http://brucehardie.com/notes/042/.

Chapter 3 Analyses

We start by loading the two csv files:

df _edible_grocery <- read.csv("C:/Users/bhard/Desktop/edible grocery.csv",
fileEncoding = "UTF-8-BOM")
df sku weight <- read.csv("C:/Users/bhard/Desktop/sku_weight.csv",
fileEncoding = "UTF-8-BOM")

[Optional] Technical question
Why do we need fileEncoding = "UTF-8-BOM"?

Next, we merge the two files so that we know the weight of each SKU:
df <- merge(df_sku weight, df_edible_grocery, by = "sku_id")

[Optional] Technical aside

We have performed what is called an inner join. How is this different from a left outer
join, right outer join, and full outer join?

The volume purchased and spend variables are created in the following manner. We also
create a year variable.

df <- within(df, {
volume <- units * weight / 1000
spend <- units * price
year <- floor((week - 1) / 52) + 1

}
)

We declare the panel size:

num_panellists <- 5021

The next step is to compute weekly revenue by brand:

df_tmp <- aggregate(spend ~ week + brand,
data = df,
FUN = sum)

This new data frame has a so-called long format. We would like to reshape it to a so-called
wide format, where the rows correspond to weeks and the columns correspond to brands.

df _weekly rev <- reshape(data = df_tmp,

idvar = "week",
v.names = "spend",
timevar = "brand",
direction = "wide")

We add column names and compute category revenue.

colnames(df weekly rev)[-1] <- c("alpha", "bravo", "charlie", "delta",
"other")

df weekly rev$category <- rowSums(df weekly rev[, c(2:6)])

rm(df_tmp)

We create a plot of weekly dollar sales for Alpha in the following manner.

with(df_weekly rev,
plot(week, alpha,

type = "1%,
main = "Alpha Revenue",
xaxt = "n",
yaxt = "n",
xlab = "Week",
ylab = "",
ylim = c(0@, 2500)
)
)
axis(1, at = seq(13, 104, by = 13),
las = 1)

axis(2, at = seq(®, 2500, by = 500),
labels = c("$0", "$500", "$1000", "$1500", "$2000", "$2500"),
las = 1)

Alpha Revenue

$2500 —

$2000

$1500

$1000

$500 —

$0

13 26 39 52 65 78 91 104

Week

Minor changes to the code generates a plot of weekly category revenue.

with(df_weekly_rev,
plot(week, category,

type = "1%,
main = "Category Revenue",
xaxt = "n",
yaxt = "n",
xlab = "Week",
ylab = "",
ylim = c(0@, 4500)
)
)
axis(1, at = seq(13, 104, by = 13),
las = 1)

axis(2, at = seq(@, 4500, by = 500),
labels = c("$0", "$500", "$1000", "$1500", "$2000", "$2500",
"$3000", "$3500", "$4000", "$4500"),
las = 1)

Category Revenue

$4500 —
$4000 —
$3500 —
$3000 —
$2500 —
$2000 —
$1500 —
$1000 —
$500 —

13 26 39 52 65 78 91 104

Week

We compute weekly volume sales by brand in a similar manner to that used above for
revenue.

df _tmp <- aggregate(volume ~ week + brand,

data = df,
FUN=sum)
df weekly vol <- reshape(data = df_tmp,
idvar = "week",
v.names = "volume",
timevar = "brand",
direction = "wide")

colnames(df weekly vol)[-1] <- c("alpha", "bravo", "charlie", "delta",
"other")

df_weekly vol$category <- rowSums(df_weekly vol[, c(2:6)])

rm(df_tmp)

We compute weekly volume shares in the following manner.

df_vol _share <- 100 * df_weekly vol[, c(2:6)] / df_weekly vol[, 7]
df vol share$week <- df weekly vol$week

The following code generates a plot of weekly volume market share for Alpha and Beta.

with(df_vol_share,
plot(week, alpha,

type = "1",
main = "Volume Market Share",
xaxt = "n",
yaxt = "n",

xlab = "Week",
ylab = llll,

ylim = c(0, 89)
)

)

with(df_vol share,
lines(week, bravo,
col = "red"
)
)

axis(1, at = seq(13, 104, by = 13),
las = 1)
axis(2, at = seq(@, 80, by = 10),

labElS — C("@oo", "10%", "2900", "3600", "4900", "5600", "6000", Il7e%ll,

"89%") R
las = 1)

legend(x = 0, y = 12,
legend = c("Alpha", "Bravo"),
1ty = 1:1,
col = c("black", "red"),
cex = 0.8,
box.lty = @
)

Volume Market Share

80% —

70% —

20%

0, -]
10% — Alpha
— Bravo

0% -

o

l l l l l
13 26 39 52 65

Week

78 91 104

We compute the total revenue by year at both the brand and category level, and compute

the percentage change across the two years.

tmp <- with(df,
tapply(spend, list(year, brand), sum)
)

annual_tot_rev <- cbind(tmp, rowSums(tmp))
colnames(annual_tot rev)[6] <- "Category"
annual_tot_rev

Alpha Bravo Charlie Delta Other Category
1 33570.94 28603.35 5120.87 3271.51 1535.23 72101.90
2 35250.75 26926.87 3922.68 2820.81 1739.82 70660.93

100 * (annual_tot_rev[2,] / annual_tot rev[1,] - 1)

Alpha Bravo Charlie Delta Other Category
5.003762 -5.861132 -23.398173 -13.776513 13.326342 -1.998519

We compute each brand’s dollar market share by year, and compute the percentage change
across the two years.

dollar_mkt_share <- 100 * annual_tot _rev[, -6] / annual_tot_rev[, 6]
dollar_mkt_share

Alpha Bravo Charlie Delta Other
1 46.56041 39.67073 7.102268 4.537342 2.129250
2 49.88719 38.10715 5.551413 3.992036 2.462209

100 * (dollar_mkt share[2,] / dollar_mkt share[1,] - 1)

Alpha Bravo Charlie Delta Other
7.145077 -3.941382 -21.836051 -12.018180 15.637377

Chapter 4 Analyses

Creating the required datasets

We first need to create datasets that summarise each panellist’s brand and category
purchasing. We will create a separate dataset for transactions, spend, and volume
purchasing, focusing on the first year.

Let’s start with the transaction summary. We aggregate the purchase records to the
transaction level:

df_tmpl <- aggregate(panel_id ~ trans_id + brand,
data = df[df$year == 1,],
FUN = max
)

Next we determine the numbers of transaction occasions on which each brand was
purchased by each panellist.

df_tmp2 <- aggregate(trans_id ~ panel_id + brand,
data = df_tmp1l,
FUN = length
)

We reshape the resulting data frame and replace missing values with 0.

df_tmp3 <- reshape(data = df_tmp2,

idvar = "panel id",
v.names = "trans_id",
timevar = "brand",
direction = "wide"

)

df _tmp3[is.na(df_tmp3)] <- ©

Finally, we determine the number of category transactions made by each panellist and
merge this with the brand-level summary to create our final transaction dataset.

df _tmp4 <- aggregate(trans_id ~ panel id,
data = df_tmpl,
function(x) length(unique(x))
)

df panellist trans <- merge(df_tmp3, df tmp4)

colnames(df panellist trans)[-1] <- c("alpha", "bravo", "charlie", "delta",
"other", "category")

rm("df_tmpl", "df tmp2", "df_tmp3", "df tmpd")

Creating the spend summary is much easier, as i) we can simply sum up the spend
associated with each row of df by panellist id and brand, and ii) category spend is simply
the sum of brand spend.

df _tmp <- aggregate(spend ~ panel_id + brand,
data = df[df$year == 1,],

FUN = sum

)

df panellist spend <- reshape(data = df_tmp,
idvar = "panel _id",
v.names = "spend",
timevar = "brand",
direction = "wide"

)

df panellist spend[is.na(df_panellist spend)] <- ©

colnames(df_panellist_spend)[-1] <- c("alpha", "bravo", "charlie", "delta",
"other")

df _panellist spend$category <- rowSums(df panellist spend[, c(2:6)])

rm("df_tmp")

The year 1 summary of each panellist’s volume purchasing by brand is created in the same
manner.

df_tmp <- aggregate(volume ~ panel _id + brand,
data = df[df$year == 1,],

FUN = sum

)

df panellist vol <- reshape(data = df_tmp,
idvar = "panel id",
v.names = "volume",
timevar = "brand",
direction = "wide"

)

df panellist vol[is.na(df _panellist vol)] <- @

colnames(df_panellist vol)[-1] <- c("alpha", "bravo", "charlie", "delta",
"other")

df panellist vol$category <- rowSums(df_panellist vol[, c(2:6)])

rm("df_tmp")

[Optional] Checking our work to date

As a necessary (but not sufficient) check that the datasets we’ve created match those we
created in Excel, let’s see if the total brand and category numbers match those from the
Excel datasets.

colSums(df_panellist_trans[, 2:7])

alpha bravo charlie delta other category
9060 8255 1882 859 422 20030

colSums(df _panellist spend[, 2:7])

alpha bravo charlie delta other category
33570.94 28603.35 5120.87 3271.51 1535.23 72101.90

colSums(df_panellist vol[, 2:7])

alpha bravo charlie delta other category
9166.250 8240.350 2171.125 921.000 286.275 20785.000

They do.
Examining purchase frequency

The penetration and purchases per buyer (PPB) numbers are computed as follows

tot_trans <-colSums(df_panellist trans[, 2:7])
num_buyers <- colSums(df_panellist trans[, 2:7] != 0)
penetration <- 100 * num_buyers / num_panellists

ppb <- tot_trans / num_buyers

round(penetration, digits = 1)

alpha bravo charlie delta other category
52.3 51.0 16.2 7.6 3.5 91.1

round(ppb, digits = 2)

alpha bravo charlie delta other category
3.45 3.22 2.31 2.26 2.40 4.38

We wish to create of plot of the distribution of category purchase frequency. First we create
the frequency distribution of category purchasing.

df_tmp <- aggregate(panel_id ~ category,

data = df_panellist trans,

length

)
colnames(df _tmp) <- c("num_trans", "freq")
df _freq_cat <- rbind(data.frame(num_trans = @, freq = num_panellists -
sum(df_tmp$freq)),

df_tmp)

rm("df_tmp")

We right censor the distribution at 15 and plot the percentage of panellists making 0, 1, 2,
..., 15+ category purchases.

tmp <- df _freq cat[1:15, 2]
tmp[16] <- sum(df _freq_cat[16:nrow(df freq_cat), 2])

barplot(100 * tmp / num_panellists,
cex.names = 0.89,
cex.axis = 0.89,
names.arg = c(c(0:14), "15+"),
xlab = "Number of category transactions”,
ylab "% Households"

)

10

10
|
|

% Households

o DDDDDDEDD
7 8 9 10 11 12 13 14 15+

Number of category transactions

Technical aside

The cex.names = 0.89 option is required to rescale the x-axis labels so that the 15+ label
is plotted in this document. It is not needed when executing the code in RStudio with a
large monitor. We add cex.axis = 0.89 to make the y-axis labels the same size as those
of the x-axis.

We wish to create of plot of the distribution of the number of purchase occasions on which
Alpha was purchased. First we create the frequency distribution of Alpha purchasing.

df_freq_alpha <- aggregate(panel_id ~ alpha,
data = df_panellist_trans,
length
)
colnames(df_freq_alpha) <- c("num_trans", "freq")
df_freq_alpha[1,2] <- num_panellists -
sum(df_freq_alpha[2:nrow(df_freq_alpha), 2])

We right censor the distribution at 10 and plot the percentage of panellists that purchased
Alphaon0, 1, 2, ..., 10+ (category) purchase occasions.

tmp <- df freq alpha[l:10, 2]
tmp[11] <- sum(df_freq_alpha[ll:nrow(df_ freq_alpha), 2])

barplot(100 * tmp / num_panellists,
names.arg = c(c(0:9), "1o0+"),
xlab "Number of transactions",
ylab = "% Households"

11

40

30

% Households
20

0 1 2 3 4 5 6 7 8 9 10+

Number of transactions

Examining spend

We wish to visualise the variability in category spend. Given this objective, some readers
would automatically think of creating a (kernel) density plot.

plot(density(df_panellist spend$category))

density.default(x = df_panellist_spend$category)

oy
O__
o
2]
O__

- ©

=

7]

c

o

o <9
o
-
Q._
o
(=4
O__
o

I I l l
0 50 100 150

N = 4574 Bandwidth = 1.74

12

While this provides a good visualisation of the shape of the distribution, it can be difficult
for most “consumers” of the plot to extract some additional information that may be of
interest. For example, it is not easy to answer the question “What percentage of category
buyers spent $30 or less in year 1?”.

One possible solution is to plot a histogram.

hist(df_panellist_spend$category)

Histogram of df_panellist_spend$category

o
o _ I
To]
—
>
o O
c o _|
o O
>
o
[0}
et
L
o
o -
L]
o -

[I I I
0 50 100 150

df_panellist_spend$category

The distributions of many customer behaviours have a long right tail. Accommodating the
range of values can make it difficult to get a clear sense of what is happening on the left side
of the distribution. It can therefore be helpful to bin the data (as with a histogram) but to
right censor the data, assigning all of the observations with a value of x or higher to an x +
bin. We plot create a bar chart of the associated frequencies.

We compute key summary stats in the following manner.
summary(df_panellist spend$category)

Min. 1st Qu. Median Mean 3rd Qu. Max .
1.27 6.76 12.57 15.76 20.74 166.70

quantile(df_panellist spend$category, probs = seq(@, 1, 0.05))

0% 5% 10% 15% 20% 25% 30% 35%

1.2700 2.6900 3.3900 4.6700 5.8800 6.7600 7.6340 9.0655

40% 45% 50% 55% 60% 65% 70% 75%

10.0600 11.0285 12.5700 13.7300 15.2400 16.8400 18.7900 20.7375
80% 85% 90% 95% 100%

23.4300 26.8805 31.8100 39.7185 166.7000

13

We bin the data into bins of width $5 with a $50+ bin,

boundaries <- c(seq(@, 50, 5), max(df_panellist spend$category) + 1)
tmp <- cut(df_panellist spend$category, breaks = boundaries)

and plot the associated relative frequencies.

barplot(100 * table(tmp) / sum(table(tmp)),
cex.names = 0.85,
cex.axis = 0.85,
names.arg = c("@-5", "5-10", "10-15", "15-20", "20-25", "25-30",
"39-35", "35-40", "40-45", "45-50", "50+"),

ylim = c(9, 25),
xlab = "Category spend ($)",
ylab = "% Category buyers"
)
g_
o
(]
5 o |
3 @
>
[e]
g o
£ o
O
L
o
[

0-5 510 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50+

Category spend ($)

14

Technical aside
Let’s look at the distribution of spend,

table(tmp)
tmp
(0,5] (5,10] (10,15] (15,20] (20,25] (25,30] (30,35] (35,40]
750 1073 882 623 450 256 193 122
(40,45] (45,50] (50,168]
68 48 109

and compare it to the distribution we created in Excel. The numbers match up except for
two bins. In R we get 193 and 122, while in Excel we get 192 and 123. What'’s going on?
Notice that the boundary of these two categories is 35. We have one panellist that spent
$35 in year 1:

df panellist spend$panel id[df panellist spend$category == 35]
[1] 3116045

When defining intervals, we will see both parentheses, (), and square brackets, [], being
used. The notation (a, b] is used to indicate an interval from a to b that excludes a but
includes b. R includes this person in the $30-35 bin. Excel is putting them in the $35-40
bin.

Minor changes to this code gives us a plot of the distribution of spend on Alpha with $2-
wide bins and a $40+ bin.

boundaries <- c(seq(@, 40, 2), max(df_panellist spend$alpha) + 1)
tmp <- cut(df _panellist spend$alpha[df panellist spend$alpha > 0],
breaks = boundaries)

Note the use of [df_panellist_spend$alpha > @] to exclude those panellists that had
zero spend on Alpha in year 1.

barplot(100 * table(tmp) / sum(table(tmp)),
cex.names = 0.675,
cex.axis = 0.675,
names.arg = c("@-2", "", "4-6", "", "8-10", "", "12-14", "", "16-18",
meoo"20-22", "M, "24-26", "", "28-3@", "", "32-34", "',
"36-38", "", "40+"),

ylim = c(e, 25),

xlab = "Alpha spend ($)",
ylab = "% Alpha buyers"

)

15

25
J

15
|

10
1

% Alpha buyers

:_D_D_ DDDDDDDDDDEEED

0-2 4-6 8-10 12-14 16-18 20-22 24-26 28-30 32-34 36-38 40+

Alpha spend ($)

Basic decile analysis

We first create a dataset that reports, for each category buyer in year 1, the number of
category transactions, total category spend, and the unique number of brands purchased.

Before doing so, let’s check that the three source datasets have the same ordering by
panellist id.

identical(df_panellist spend$panel _id,df panellist vol$panel id)
[1] TRUE
identical(df_panellist trans$panel id,df panellist vol$panel id)
[1] FALSE
identical(df_panellist trans$panel id,df_panellist spend$panel id)
[1] FALSE

[Optional] Digging deeper into R

Why is it that df_panellist_trans is sorted by panel_id but df_panellist_spend and
df_panellist vol are not?

Let’s sort df_panellist_spend and df_panellist_vol by panel_id.

df panellist spend <- df panellist spend[order(df_panellist spend$panel id),

]
df_panellist vol <- df_panellist vol[order(df_panellist vol$panel id),]

16

identical(df_panellist spend$panel id,df panellist vol$panel id)
[1] TRUE
identical(df_panellist trans$panel _id,df panellist vol$panel id)
[1] TRUE

identical(df _panellist trans$panel id,df panellist spend$panel id)
[1] TRUE

We can now create the desired summary dataset.

num_brands <- rowSums(df panellist trans[, c(2:6)] > @)

df panellist cat sum <- as.data.frame(cbind(df_panellist trans$panel id,
df_panellist trans$category,
df_panellist_spend$category,
num_brands
)

)

colnames(df_panellist_cat_sum) <- c("panel_id", "trans", "spend",
"num_brands")

We create a rank number where a rank of 1 is assigned to the biggest spender, and convert
the rank into a decile number, where the first decile represents the highest spending 10%
of customers.

df_panellist cat sum$rank <- rank(-df_panellist cat_sum$spend,
ties.method = "first")
df panellist cat sum$decile <- floor(1@ * (df _panellist cat sum$rank - 1) /
length(df_panellist_cat_sum$rank)) + 1
df panellist cat sum$count <- 1

Next, we create a summary of the key variables by decile.

df decile_tots <- aggregate(cbind(trans, spend, num_brands, count) ~ decile,
df_panellist cat_sum, FUN = "sum"

We can now create the entries for our decile table.

df decile sum <- df _decile tots["decile"]
df_decile_sum$pct _hh <- 100 * df_decile_ tots$count /
sum(df_decile tots$count)
df decile sum$pct spend <- 100 * df_decile tots$spend /
sum(df_decile tots$spend)
df decile_sum$pct trans <- 100 * df _decile tots$trans /
sum(df_decile tots$trans)
df_decile_sum$spend _hh <- df _decile tots$spend / df_decile tots$count
df decile_sum$cat _trans_hh <- df_decile tots$trans / df_decile tots$count

17

df decile sum$aov <- df decile tots$spend / df _decile tots$trans
df decile_sum$avg brands <- df_decile tots$num brands /
df_decile tots$count

df_decile_sum

decile pct_hh pct _spend pct trans spend _hh cat_trans_hh aov
1 1 10.013118 28.361250 24.278582 44.648472 10.617904 4.205017
2 2 9.991255 17.206689 16.310534 27.147374 7.148796 3.797475
3 3 10.013118 13.315363 13.444833 20.962074 5.879913 3.565032
4 4 9.991255 10.716070 11.108337 16.906980 4.868709 3.472580
5 5 9.991255 8.754984 9.470794 13.812932 4.150985 3.327628
6 6 10.013118 7.074127 7.783325 11.136638 3.403930 3.271700
7 7 9.991255 5.689614 6.709935 8.976630 2.940919 3.052321
8 8 10.013118 4.281593 4.877683 6.740415 2.133188 3.159785
9 9 9.991255 2.888079 3.689466 4.556586 1.617068 2.817808
10 10 9.991255 1.712229 2.326510 2.701422 1.019694 2.649249
avg_brands
1 1.847162
2 1.636761
3 1.582969
4 1.540481
5 1.501094
6 1.410480
7 1.374179
8 1.224891
9 1.212254
10 1.000000

This decile analysis uses deciles that represent 10% of the category buyers. An alternative
approach is to create deciles that represent 10% of category spend. The only change to
what we have done above is how we create the decile variable.

We start by recreating df_panellist_cat_sum

df_panellist _cat_sum <- as.data.frame(cbind(df_panellist trans$panel_id,
df panellist trans$category,
df panellist spend$category,
num_brands

)

)

colnames(df_panellist_cat_sum) <- c("panel_id", "trans", "spend",
"num_brands")
df panellist cat _sum$count <- 1

We sort the dataset by category spend, from highest to lowest.

df panellist cat sum <- df_panellist cat sum[order(
-df_panellist cat sum$spend),]

18

Next we create a variable that reports the percentage of total spend accounted for by this
customer and those customers that spent more than this customer in year 1.

df panellist cat sum$cum <- 100 * cumsum(df_panellist cat sum$spend) /
sum((df_panellist cat_sum$spend))

This variable is converted to a decile number.

df panellist cat sum$decile <- floor((df _panellist cat sum$cum - le-6) / 10)
+ 1

[Optional] Technical aside

Why are we subtracting 1e-6? When working with other datasets, you should not blindly
subtract this number. How would you determine whether it is OK to use this number or
whether you should use a smaller number?

All the other calculations are as for our first decile table.

df decile tots <- aggregate(cbind(trans, spend, num_brands, count) ~ decile,
df _panellist cat sum, FUN = "sum"

df _decile sum <- df decile tots["decile"]
df decile_sum$pct hh <- 100 * df_decile tots$count /
sum(df_decile_ tots$count)
df decile sum$pct spend <- 100 * df _decile tots$spend /
sum(df_decile tots$spend)
df_decile_sum$pct trans <- 100 * df_decile tots$trans /
sum(df_decile tots$trans)
df decile_sum$spend_hh <- df_decile tots$spend / df_decile tots$count
df_decile_sum$cat_trans_hh <- df_decile tots$trans / df _decile_ tots$count
df decile_sum$aov <- df decile tots$spend / df _decile tots$trans
df decile_sum$avg brands <- df_decile tots$num brands / df _decile tots$count

df _decile sum

decile pct_hh pct _spend pct _trans spend hh cat _trans_hh aov
1 1 2.470485 9.994591 7.583625 63.772478 13.442478 4.744101
2 2 3.716659 9.981096 8.911633 42.332706 10.500000 4.031686
3 3 4.634893 9.988724 9.241138 33.971981 8.731132 3.890902
4 4 5.596852 10.017683 9.410884 28.214609 7.363281 3.831798
5 5 6.646261 9.989251 9.860210 23.692237 6.496711 3.646805
6 6 7.892436 10.020554 10.214678 20.013878 5.667590 3.531285
7 7 9.466550 10.007323 10.369446 16.663903 4.796767 3.473987
8 8 11.674683 9.991082 10.873689 13.490187 4.078652 3.307511
9 9 15.675557 10.003204 11.228158 10.059275 3.136681 3.206981
10 10 32.225623 10.006491 12.306540 4.894756 1.672320 2.926925

avg_brands

1 1.920354
2 1.829412
3 1.778302

19

.628906
.648026
.567867
.540416
.479401
.389121
.162144

R WVo~NO U N
PR R R R RR

(%]
Creating Lorenz curves

We create the Lorenz curve for (Alpha) transactions using the logic associated with the
spend Lorenz curve in the Excel note.

sorted_trans <- sort(df_panellist trans$alpha[df panellist trans$alpha > 0])
pct_trans <- 100 * cumsum(sorted_trans) / sum(sorted_trans)
pct_buyers <- 100 * seq(l, length(pct_trans)) / length(pct_trans)

par(pty="s")
plot(pct_buyers, pct_trans,
type = "1%,
xlab = "% Alpha buyers",
ylab = "% Alpha transactions"”,
xlim = c(@, 100),
ylim = c(0, 100)
)

100
|

% Alpha transactions
40

T T T T T T
0 20 40 60 80 100

% Alpha buyers

What is the value of x/207?

min(pct_trans[pct_buyers >= 80])

20

[1] 54.52539

What is the value of 50/y?
100 - min(pct_buyers[pct_trans >= 50])
[1] 23.09451

The Lorenz curve for (Alpha) spend is created in the same manner.

sorted_spend <- sort(df_panellist spend$alpha[df panellist spend$alpha > 0])
pct _spend <- 100 * cumsum(sorted spend) / sum(sorted spend)
pct_buyers <- 100 * seq(l, length(pct_spend)) / length(pct_spend)

par(pty="s")

plot(pct_buyers, pct_spend,
type = "1,
xlab = "% Alpha buyers",
ylab = "% Alpha spend”,
xlim = c(@, 100),
ylim = c(@, 100)
)

60 80 100
| |

% Alpha spend
40

l l l l l l
0 20 40 60 80 100

% Alpha buyers

min(pct_spend[pct_buyers >= 80])
[1] 50.883
100 - min(pct_buyers[pct_spend >= 50])

[1] 20.50305

21

Chapter 5 Analyses

Our analysis of multibrand buying behaviour in year 1 makes use of the following three
datasets created above: df_panellist trans,df panellist_spend, and
df _panellist vol.

Before we undertaken any further analysis, let’s check that these three source datasets
have the same ordering by panellist id.

identical(df_panellist spend$panel id,df panellist vol$panel id)
[1] TRUE
identical(df_panellist trans$panel id,df panellist vol$panel id)
[1] TRUE

identical(df_panellist trans$panel_id,df panellist spend$panel id)
[1] TRUE

We create the distribution of the number of separate brands purchased by category buyers
inyear 1.

num_brands <- rowSums(df_panellist trans[, c(2:6)] > @)
100 * table(num_brands) / length(num_brands)

num_brands
1 2 3 4
64.8010494 27.9405334 6.4057718 0.8526454

We determine the number of different brands purchased in the year as a function of the
number of category purchases made during the year.

num_brands_by cat_trans <- table(df_panellist trans$category, num_brands)
num_brands_by cat_trans

num_brands
i1 2 3
655 12 ©
573 184 2
516 216 24
370 193 47
278 189 43
196 124 53
121 93 28
87 94 25
51 51 22
10 42 34 9
11 24 24 6

VWoONOUTEA WN R
Wowwuiooh~hNR OO D

22

12 16 21 9 4
13 11 9 6 1
14 13 9 8 1
15 4 8 3 0
16 3 6 4 3
17 1 3 3 0
18 1 3 0 o
19 o 2 © o
20 2 1 1 ©
22 © 1 o o
25 © 1 o o
27 © © o0 1

We compute the average number of brands purchased for each level of category
purchasing.

rowSums (num_brands_by cat_trans %*% diag(c(1:4))) /
rowSums (num_brands_by cat_trans)

1 2 3 4 5 6 7 8
1.017991 1.247694 1.352708 1.478758 1.558366 1.666667 1.663968 1.732057
9 10 11 12 13 14 15 16
1.818898 1.611765 1.789474 2.020000 1.888889 1.903226 1.933333 2.437500
17 18 19 20 22 25 27
2.285714 1.750000 2.000000 1.750000 2.000000 2.000000 4.000000

Duplication of purchase

We create the duplication of purchase table.

ever_buyers <- 1 * as.matrix(df_panellist trans[, 2:6] > @)
duplication_counts <- t(ever_buyers) %*% ever_buyers

dop <- 1@0*diag(l / diag(duplication_counts)) %*% duplication_counts
diag(dop) <- NA

rownames(dop) <- colnames(dop)

dop

alpha bravo charlie delta other
alpha NA 34.14634 15.35823 9.108232 2.629573
bravo 34.97268 NA 14.91023 5.464481 4.293521
charlie 49.56950 46.98647 NA 14.268143 3.198032
delta 62.89474 36.84211 30.52632 NA 2.631579
other 39.20455 62.50000 14.77273 5.681818 NA

23

Share of category requirements (SCR)

We compute each brand’s SCR.

brand_purchasing <- colSums(df _panellist vol[, c(2:6)])

category purchasing <- colSums(ever_buyers * (df_panellist vol[,
"category"]))

scr <- 100 * brand_purchasing / category purchasing

scr

alpha bravo charlie delta other
68.84153 67.98282 45.42459 40.44085 29.21770

Cross purchasing

We create the cross purchasing analysis for year 1.

tmp <- t(ever_buyers) %*% as.matrix(df_panellist vol[, c(2:6)])
cross_purchasing <- 100 * tmp /colSums(ever_buyers *
(df_panellist vol[,"category"]))

rownames(cross_purchasing) <- colnames(cross_purchasing)
cross_purchasing

alpha bravo charlie delta other
alpha 68.84153 18.48592 8.083552 3.781449 0.8075479
bravo 20.80483 67.98282 7.485011 2.322373 1.4049735
charlie 25.55640 23.65771 45.424589 4.608102 ©0.7531972
delta 30.76096 13.64056 14.574734 40.440854 0.5829016
other 22.74954 40.56950 5.447540 2.015717 29.2176975

We create the importance of competition plot for Alpha.

pie_labels <- paste(colnames(cross_purchasing),
round(cross_purchasing[1,], @), "%")
pie(cross_purchasing[1,],
labels = pie_1labels,
main = "Important of Competition to Buyers of Alpha"

)

24

Important of Competition to Buyers of Alpha

alpha 69 %

other 1 %
delta 4 %

charlie 8 %

bravo 18 %

We create the importance against expectation plot for Alpha. First we compute the
(volume) market share across all buyers. (The volume market share for each brand just for
buyers of Alpha is given in the first row of cross_purchasing.)

mkt_share <- 100 * colSums(df_panellist vol[, 2:6]) /
sum(df_panellist vol[, 7])

Removing Alpha, we compute the share of residual (volume) purchasing for buyers of
Alpha and for all buyers.

sorp_alpha <- cross_purchasing[1, 2:5] / (100 - cross_purchasing[1l, 1])
sorp_cat <- mkt_share[2:5] / (100 - mkt_share[1])

We compute the index against expectation and plot the index by brand.

index_ae <- 100 * sorp_alpha / sorp_cat
index_ae

bravo charlie delta other
83.65245 138.83557 153.10240 105.18848

barplot(index_ae,
horiz = TRUE,
las =1,
main = "Importance Against Expectation"

)

25

Importance Against Expectation

other

delta

charlie

bravo

0 20 40 60 80 100 120 140

Finally, we perform a cross purchasing analysis for year 1 using spend (instead of volume,
as above).

tmp <- t(ever_buyers) %*% as.matrix(df _panellist spend[, c(2:6)])
cross_purchasing spend <- 100 * tmp /

colSums(ever_buyers * (df_panellist_spend[, "category"]))
rownames(cross_purchasing spend) <- colnames(cross_purchasing spend)
cross_purchasing_ spend

alpha bravo charlie delta other
alpha 70.72216 18.77681 5.490578 3.806608 1.2038441
bravo 22.12248 68.10065 4.942957 2.400243 2.4336704
charlie 31.16527 26.80614 35.618017 5.513734 ©.8968373
delta 32.95122 14.57527 10.231985 41.513042 ©.7284904
other 21.20421 34.37785 3.043571 1.903325 39.4710388

Chapter 6 Analyses — Established Products

Understanding temporal variations in sales

The first step is to create a dataset that summarises, for each week, the number of
panellists that made at least one purchase of Alpha, the total number of category purchase
occasions on which Alpha was purchased, and Alpha’s (dollar and volume) sales. (Yes, the
revenue and volume numbers were created as part of the Chapter 3 analyses, but let’s
create them independently here.)

26

df_alpha_weekly <- aggregate(cbind(trans_id, panel_id) ~ week,
data = df[df$brand == "Alpha",],
function(x) length(unique(x))

)

colnames(df_alpha_weekly)[-1] <- c("num_trans", "num_buyers")

df _tmp <- aggregate(cbind(spend, volume) ~ week,
data = df[df$brand == "Alpha",],
FUN = sum)

df alpha_weekly$rev <- df_ tmp$spend

df alpha_weekly$vol <- df_tmp$volume

rm("df_tmp")

Next we compute the numbers associated with the revenue decomposition.

df alpha_weekly <- within(df_alpha weekly,
{
penet <- num_buyers / num_panellists
ppb <- num_trans / num_buyers
aoval <- rev / num_trans
aovol <- vol / num_trans
avg price kg <- rev / vol

)

We compute the correlations between weekly revenue and the components of its
(multiplicative) decomposition across the two years,

cor(df_alpha_weekly[, c("rev", "penet", "aoval", "aovol", "avg price kg")])

rev penet aoval aovol avg price kg
rev 1.0000000 ©.9818491 ©0.54234453 0.7584870 -0.58957906
penet 0.9818491 1.0000000 ©.38687004 ©.7034499 -0.65403436
aoval 0.5423445 ©0.3868700 1.00000000 ©0.6914778 -0.07304781
aovol 0.7584870 0.7034499 0.69147783 1.0000000 -0.75415741
avg_price_kg -0.5895791 -0.6540344 -0.07304781 -0.7541574 1.00000000

and separately for each of two years.

cor(df_alpha_weekly[df alpha weekly$week <= 52,
c("rev", "penet", "aoval", "aovol", "avg price kg")]

)
rev penet aoval aovol avg price kg
rev 1.0000000 ©.9901953 0.7876445 ©0.8397546 -0.5335911
penet 0.9901953 1.0000000 ©.7072936 ©0.7778116 -0.5531073
aoval 0.7876445 ©.7072936 1.0000000 ©.9564885 -0.3491929
aovol 0.8397546 ©0.7778116 ©0.9564885 1.0000000 -0.6064231
avg _price_kg -0.5335911 -0.5531073 -0.3491929 -0.6064231 1.0000000

27

cor(df_alpha_weekly[df_alpha_weekly$week >= 53,
c("rev", "penet", "aoval", "aovol", "avg price kg")]

)
rev penet aoval aovol avg price kg
rev 1.0000000 ©.9779584 0.41359141 0.7699498 -0.68502064
penet 0.9779584 1.0000000 ©0.22708650 0.7104118 -0.74828547
aoval 0.4135914 0.2270865 1.00000000 0.6020706 -0.03484664
aovol 0.7699498 0.7104118 ©0.60207059 1.0000000 -0.80414759
avg_price_kg -0.6850206 -0.7482855 -0.03484664 -0.8041476 1.00000000

We plot the weekly penetration numbers.

with(df_alpha_weekly,
plot(week, 100 * penet,

type = "1%,
main = "Weekly Penetration",
xaxt="n",
yaxt="n",
xlab = "Week",
ylab = "",
ylim = c(0,12)
)
)
axis(1, at = seq(13, 104, by = 13),
las = 1)
axis(2, at = seq(@, 12, by = 2),
labels = c("@%", "2%", "4%", "6%", "8%", "10%", "12%"),
las = 1)

Weekly Penetration

12% —

10% —

8% —

6% -

4% —

2% —

0% -

13 26 39 52 65 78 91 104

Week

28

In order to get a sense of how changes in revenue reflect changes in penetration, we want
to plot both time series of the same set of axes.

In order to create sufficient space for a second y-axis labels on the RHS
of

the plot, we add extra space to right margin of plot within frame.
par(mar=c(5, 4, 4, 6) + 0.1)

We plot the revenue data and draw the associated axes.
with(df_alpha weekly,
plot(week, rev,

type = "1%,
main = "Weekly Revenue and Penetration",
xaxt = "n",
yaxt = "n",
xlab = "Week",
ylab = "",
ylim = c(@, 2500)
)
)
axis(1l, at = seq(13, 104, by = 13),
las = 1)

axis(2, at = seq(@, 2500, by = 500),
labels = c("¢$0", "$500", "$1000", "$1500", "$2000", "$2500"),
las = 1)

We overlay a second plot, and add the second y-axis and legend.
par(new=TRUE)

with(df_alpha weekly,
plot(week, 100 * penet,

type = "1",

xaxt = "n",

yaxt = IlnlIJ

xlab = "Week",
ylab = n II,

ylim = c(9, 12),
col="red"

)
)
axis(4, at = seq(@, 12, by = 2),
labels = c("e%", "2%", "4%", "e%", "8%", "10%", "12%"),
las = 1,
col.axis = "black")

legend("topleft",
legend = c("Revenue", "Penetration"),
1ty = 1:1,
cex = 0.75,

29

col = c("black", "red")

Weekly Revenue and Penetration

$2500 | — Revenue — 12%

— Penetration

— 0,
$2000 — 10%
— 8%
$1500 —
— 6%

$1000 —
— 4%

$500 | L o

$0 ~ 0%

13 26 39 52 65 78 91 104

Week

We create the plots of the other components of the revenue decomposition.

Average order value:

with(df_alpha_weekly,
plot(week, aoval,

type = "1%,
main = "Weekly Average Order Value",
xaxt = "n",
yaxt = "n",
xlab = "Week",
ylab = "",
ylim = c(9, 6)
)
)
axis(1, at = seq(13, 104, by = 13),
las = 1)

axis(2, at = 0:6,
1abels = C(Il$ell’ Il$1ll, Il$2ll, ll$3ll-’ II$4II’ Il$5ll’ "$6"),
las = 1)

30

$6

$5

$4

$3

$2

$1

$0

Weekly Average Order Value

13 26 39 52 65 78 91 104
Week
Average order volume:
with(df_alpha_weekly,
plot(week, aovol,
type = "1%,
main = "Weekly Average Order Volume (kg)",
xaxt = "n",
yaxt = "n",
xlab = "Week",
ylab = "",
ylim = c(0, 2)
)
)
axis(1, at = seq(13, 104, by = 13),
las = 1)
axis(2, at = seq(@, 2, by = 0.25),
labels = c("o", "", "0.5", "", "1.0", "", "1.5", "", "2.0"),
las = 1)

31

Weekly Average Order Volume (kg)

2.0

1.5

1.0

0.5

13 26 39 52 65 78 91 104

Week

Average price per kg:

with(df_alpha_weekly,
plot(week, avg price kg,

type = "1%,
main = "Weekly Average Price per kg",
xaxt = "n",
yaxt = "n",
xlab = "Week",
ylab = "*",
ylim = c(@, 5)
)
)
axis(1, at = seq(13, 104, by = 13),
las = 1)

axis(2, at = @:5,
labels = c("$0", "$1", "$2", "$3", "$4", "$5"),
las = 1)

32

Weekly Average Price per kg

$5

$4

$2

$1

$0

13 26 39 52 65 78 91 104

Week

In order to perform a similar decomposition of annual revenue, we first need to create a
dataset that summarises, for each year, the number of panellists that made at least one
purchase of Alpha, the total number of category purchase occasions on which Alpha was
purchased, and Alpha’s (dollar and volume) sales. We use the same logic as above,
aggregating by year as opposed to week.

df_alpha_annual <- aggregate(cbind(trans_id, panel_id) ~ year,
data = df[df$brand == "Alpha",],
function(x) length(unique(x))

)

colnames(df _alpha_annual)[-1] <- c("num_trans", "num_buyers")

df _tmp <- aggregate(cbind(spend, volume) ~ year,
data = df[df$brand == "Alpha",],
FUN = sum)

df _alpha_annual$rev <- df_tmp$spend

df _alpha_annual$vol <- df_tmp$volume

rm("df_tmp")

t(df_alpha_annual)

[,1] [,2]
year 1.00 2.00
num_trans 9060.00 9240.00
num_buyers 2624.00 2759.00
rev 33570.94 35250.75
vol 9166.25 10346.40

Next we compute the numbers associated with the revenue decomposition.

33

df_alpha_annual <- within(df_alpha_annual,
{
penet <- num_buyers / num_panellists
ppb <- num_trans / num_buyers
aoval <- rev / num_trans
aovol <- vol / num_trans
avg _price_kg <- rev / vol

}
)
t(df _alpha_annual[, c("penet", "ppb", "aoval", "aovol", "avg price_kg")])
[,1] [,2]
penet 0.5226051 0.5494921
ppb 3.4527439 3.3490395
aoval 3.7054018 3.8150162
aovol 1.0117274 1.1197403

avg _price_kg 3.6624508 3.4070546

We compute the percentage changes in each quantity.

100 * (df_alpha_annual[2, c(2:10)] / df_alpha_annual[l, c(2:10)] - 1)

num_trans num_buyers rev vol avg _price_kg aovol aoval
2 1.986755 5.144817 5.003762 12.87495 -6.973369 10.67609 2.958234
ppb penet

2 -3.003536 5.144817
Temporal variation in customer-level purchasing

We first need to create a dataset that documents the number of times Alpha was purchased
in years 1 and 2 by each panellist.

df _tmp <- aggregate(trans_id ~ panel _id + year,
data = df[df$brand == "Alpha",],
function(x) length(unique(x))

)

df _ann_trans_sum_alpha <- reshape(data = df_tmp,
idvar = "panel id",
v.names = "trans_id",
timevar = "year",
direction = "wide"
)

colnames(df_ann_trans_sum_alpha)[-1] <- c("year_ 1", "year 2")
df_ann_trans_sum_alpha[is.na(df_ann_trans_sum _alpha)] <- ©
rm("df_tmp")

We create the basic joint distribution,

34

joint_dist_trans <- table(df_ann_trans_sum_alpha$year 1,
df_ann_trans_sum_alpha$year 2)

and add in the number of panellists that made no purchase of Alpha in either year.
joint_dist_trans[1,1] <- num_panellists - sum(joint_dist_trans)
We right censor the distribution at 10+.

tmp <- rowSums(joint dist trans[, -c(1:10)])
joint_dist_trans <- cbind(joint_dist trans[, c(1:10)], tmp)
tmp <- colSums(joint dist trans[-c(1:10),])
joint _dist trans <- rbind(joint_dist_trans[c(1:10),], tmp)

rownames(joint dist trans)[11] <- "10+"
colnames(joint_dist trans)[11] <- "1@+"

This gives us the following summary of the joint frequency distribution.
joint_dist_trans

o 1 2 3 4 5 6 7
1879 342 105 39 18 9 4 1
259 201 128 79 40 14 6 3
83 120 108 80 75 27 11 9

9

8

=
(&S]
+

%)

1

2

3 25 60 78 83 65 54 21

4 8 28 62 45 54 34 26

5 13 28 31 49 46 23 20
6 6 15 17 24 31 20 13
7

8

9

=

7 515 15 16 14

=
NwWwWuUuuwphwpeRroRro

916 6
4 7 8
812 14 1

=
NPAOOOR, UITWWWNO ®

vTumoo pwworRroouw

CrRr R ORFP WUV

2
1 3
e 3
1 3

© b~ wu

10+

A
©

We compute the marginal distribution for each year and create the associated clustered bar
chart.

dist_yl <- 100 * rowSums(joint_dist _trans) / num_panellists
dist y2 <- 100 * colSums(joint dist_trans) / num_panellists

barplot(rbind(dist_y1, dist y2),
beside = T,
xlab = "Number of transactions",
ylab = "% Households",
legend.text = c("Year 1", "Year 2")

)

35

B Year1
2 O Year?2
5 8
o]
c
(O]
(0]
2
o o _]
I «
®
N II}
o I]I]ﬂl].]lj-:-:ﬁ
0 1 2 3 4 5 6 7 8 9 10+

Number of transactions

We compute the conditional distribution of transaction counts (i.e., the empirical
probability of making x, transactions in year 2 given the panellist made x; transactions in
year 1).

cond_dist_trans <- 100 * joint_dist_trans / rowSums(joint_dist_trans)
cond_dist_trans

36

0 1 2 3 4 5
0 78.3896537 14.2678348 4.380476 1.627034 0.7509387 0.3754693
1 35.3342428 27.4215553 17.462483 10.777626 5.4570259 1.9099591
2 16.0541586 23.2108317 20.889749 15.473888 14.5067698 5.2224371
3 6.2500000 15.0000000 19.500000 20.750000 16.2500000 13.5000000
4 2.8880866 10.1083032 22.382671 16.245487 19.4945848 12.2743682
5 2.2026432 5.7268722 12.334802 13.656388 21.5859031 20.2643172
6 0.6944444 4.1666667 10.416667 11.805556 16.6666667 21.5277778
7 0.0000000 1.9801980 6.930693 4.950495 14.8514851 14.8514851
8 1.4084507 1.4084507 4.225352 7.042254 12.6760563 12.6760563
9 2.1276596 0.0000000 6.382979 8.510638 8.5106383 8.5106383
10+ 0.0000000 ©0.9345794 2.803738 0.000000 2.8037383 7.4766355
6 7 8 9 10+
%] 0.1668753 0.04171882 0©0.0000000 0.0000000 ©.0000000
1 0.8185539 0.40927694 0.2728513 0.0000000 0.1364256
2 2.1276596 1.74081238 0.5802708 0.1934236 ©0.0000000
3 5.2500000 2.25000000 ©.7500000 ©0.2500000 0.2500000
4 9.3862816 2.88808664 1.0830325 2.1660650 1.0830325
5 10.1321586 8.81057269 2.2026432 1.3215859 1.7621145
6 13.8888889 9.02777778 7.6388889 2.0833333 2.0833333
7 15.8415842 13.86138614 7.9207921 3.9603960 14.8514851
8 22.5352113 8.45070423 14.0845070 11.2676056 4.2253521

9 14.8936170 17.02127660 8.5106383 10.6382979 14.8936170
10+ 11.2149533 13.08411215 11.2149533 4.6728972 45.7943925

[Optional] Creating the joint distribution of category spend in years 1 and 2

Let’s explore how to create the joint distribution of category spend in years 1 and 2,
something we didn’t do in Excel.

The logic follows that of the binning of spend used to create the distribution of category
spend in year 1 and the creation of df_ann_trans_sum_alpha above.

df_tmp <- aggregate(spend ~ panel_id + year,
data = df,
FUN = sum

)

boundaries <- c(-Inf, seq(@, 50, 5), max(df_tmp$spend) + 1)
df tmp$bin <- cut(df_tmp$spend, breaks = boundaries)
df tmp <- df_tmp[,-c(3)]

df_ann_spend_sum_cat <- reshape(data=df_tmp,
idvar="panel id",

v.names = "bin",
timevar = "year",
direction="wide"

colnames(df_ann_spend_sum_cat)[-1] <- c("year_1", "year 2")
df_ann_spend_sum_cat[is.na(df_ann_spend sum cat)] <- "(-Inf,0]"
rm("df_tmp")

The one important change concerns the definition of boundaries. When we created the
spend distribution, we used c(seq(®, 50, 5), max(df_tmp$spend) + 1), which means
the first bin excludes 0. This was fine when we were just looking at the distribution of
spend among category buyers in that year. But we want to consider panellists that
purchased in one year but not the other. Using c(-Inf, seq(0, 50, 5),
max(df_tmp$spend) + 1) creates a bin that accommodates those with zero spend in one
of the two years.

Given this binned summary, we create the joint distribution.
joint_dist spend <- table(df_ann_spend_sum_cat$year 1,

df_ann_spend_sum_cat$year 2)
joint_dist_ spend

(-Inf,0] (0,5] (5,10] (10,15] (15,20] (20,25] (25,30] (30,35]

(-Inf,0] 0 125 88 38 9 2 1)
(0,5] 129 260 211 103 30 5 9 1
(5,10] 87 217 379 196 113 52 17 7
(10,15] 28 107 248 223 140 78 24 15

37

(15,20] 12 35 102 164 138 86 43 19

(20,25] 4 19 52 82 %0 81 63 25

(25,30] 0 4 21 29 54 47 45 22

(30,35] 0 3 10 18 28 38 17 32

(35,40] 0 0 3 7 22 13 14 17

(40,45] 0 0 0 1 7 8 11 10

(45,50] 0 1 0 2 2 7 4 6

(50,168] 1 1 0 3 4 5 8 13
(35,40] (40,45] (45,50] (50,168]

(-Inf,0] 1 0 0 0

(0,5] 1 0 0 1

(5,10] 2 0 0 3

(10,15] 6 4 7 2

(15,20] 13 5 2 4

(20,25] 17 9 5 3

(25,30] 21 6 2 5

(30,35] 23 11 9 4

(35,40] 19 9 8 10

(40,45] 6 14 6 5

(45,50] 3 6 5 12

(50,168] 9 7 11 47

This is the joint distribution of spend for those panellists that made at least one category
purchase across the two years. If we want to include those panellists that didn’t make a
category purchase, we can modify the top-left entry in this table.

joint _dist spend[1,1] <- num_panellists - sum(joint_dist spend)
joint_dist_spend

(-Inf,0] (0,5] (5,10] (10,15] (15,20] (20,25] (25,30] (30,35]

(-Inf,0] 183 125 88 38 9 2 1 0
(0,5] 129 260 211 103 30 5 9 1
(5,10] 87 217 379 196 113 52 17 7
(10,15] 28 107 248 223 140 78 24 15
(15,20] 12 35 102 164 138 86 43 19
(20,25] 4 19 52 82 20 81 63 25
(25,30] 0 4 21 29 54 47 45 22
(30,35] 0 3 10 18 28 38 17 32
(35,40] 0 0 3 7 22 13 14 17
(40,45] 0 0 0 1 7 8 11 10
(45,50] 0 1 0 2 2 7 4 6
(50,168] 1 1 0 3 4 5 8 13

38

(35,40] (40,45] (45,50] (50,168]
(-Inf,0] 1) 0)
(0,5] 1 0 0 1
(5,10] 2 0 0 3
(10,15] 6 4 7 2
(15,20] 13 5 2 4
(20,25] 17 9 5 3
(25,30] 21 6 2 5
(30,35] 23 11 9 4
(35,40] 19 9 8 10
(40,45] 6 14 6 5
(45,50] 3 6 5 12
(50,168] 9 7 11 47

Repeat rates

We wish to compute the quarterly repeat rate (or repeat-buying rate) numbers for Alpha.
The first thing we do is create a quarterly incidence matrix that indicates whether or not
each panellist purchased Alpha each quarter.

df _tmp <- df[df$brand == "Alpha",]

df_tmp$quarter = floor((df_tmp$week - 1) / 13) + 1

alpha_qtrly incid <- 1 * (table(df_tmp$panel_id, df_tmp$quarter) > 9)
rm("df_tmp")

(Panellists that never purchased Alpha in the two-year period are automatically excluded.)
The repeat buying rate is the proportion of buyers in one quarter that purchased again in
the next quarter.

rbr <- numeric(7)
for (q in 1:7){
rbr[q] <- sum(alpha_qtrly incid[, q] * alpha_qtrly incid[, q + 1]) /
sum(alpha_gtrly incid[, q])
}

rbr
[1] ©.6566820 0.6149218 0.5493134 0.5934718 0.6914008 0.5974877 ©.5254975

plot(100 * rbr,

type = "1",
main = "Repeat rate (Alpha)",
xaxt = "n",

yaxt = "n",

Xlab = n II,

ylab = nmn

ylim = c(40, 80))

axis(1, at = 1:7,
labels = c("Q1-Q2", "Q2-Q3", "Q3-Q4", "Q4-Q5", "Q5-Q6", "Q6-Q7",

39

"Q7-Q8"),
las = 1)
axis(2, at = seq(40, 80, by = 10),
labels = c("40%", "50%", "60%", "70%", "80%"),
las = 1)

Repeat rate (Alpha)

80% —

70% —

60% -

50%

40% -

I l l l l l l
Q1-Q2 Q2-Q3 Q3-Q4 Q4-Q5 Q5-Q6 Q6-Q7 Q7-Q8

Chapter 6 Analyses — New products

Setting up the data

We will be working with a new dataset. Let’s clear the workspace and load the associated
csv file.

rm(list = 1s())

df _kiwibubbles trans <-

read.csv("C:/Users/bhard/Desktop/kiwibubbles trans.csv",
fileEncoding = "UTF-8-BOM")

We will only work with market 2.

df <- df_kiwibubbles trans[df_kiwibubbles trans$Market == 2,]
df <- df[-df$Market]
num_panellists <- 1499

We create a day of year variable, where the 1 corresponds to the day the new product was
launched.
df <- within(df,

{
doy <- (Week - 1) * 7 + Day

40

}
)

We shouldn’t assume that the dataset is sorted by time of transaction for each panellist.

df <- df[order(dfID, dfdoy),]

[Optional] Double checking the data

The smallest unit of time for our analyses is day. Do we have any panellists with more
than one transaction on any day?

df _tmp <- aggregate(Units ~ ID + doy,
data = df,
FUN = sum

)
nrow(df) == nrow(df_tmp)

[1] TRUE

So, we're OK. (Do you understand what we just did with this bit of code?)

The next step is to create a depth of repeat variable, where 0 = trial purchase, 1 = first
repeat purchase, and so on.

df$dor <- numeric(nrow(df))
for(i in 2:nrow(df)){
if (df$ID[i] == df$ID[i - 1]){
df$dor[i] <- df$dor[i - 1] + 1
}
}

Did at least one panellist make a purchase of this new product each week?
length(unique(df$Week))

[1] 49

No. So which weeks are missing?

setdiff(c(1:52), unique(sort(df$Week)))

[1] 25 39 41

Let’s add empty rows in df which correspond to the missing weeks.

missing wks <- setdiff(c(1:52), unique(sort(dffWeek)))
for(i in 1:length(missing wks)){

df[nrow(df) + 1, 2] = missing wks[i]
}

41

Basic plots

The basic plots are created off a summary of the dataset that gives us the number of trial,
first repeat, and additional repeat transactions for each week.

trans_wk_dor <- table(df$Week, df$dor)
trial <- trans_wk _dor[, 1]

rpt <- rowSums(trans_wk _dor[, -c(1)])
fr <- trans_wk_dor[, 2]

ar <- rpt - fr

It is very difficult to create the stacked area plots we created in Excel using base R. We
create equivalent plots in the following manner.

First, let’s plot a trial /repeat decomposition of total weekly sales (where sales in the
number of transactions).

plot(1:52, trial,

type = "1%,
col = "red",
xlab = "Week",
ylab = "Sales (transactions)",
xaxt = "n",
yaxt = "n",
ylim = c(@, 25),
main = "Trial/Repeat Decomposition of Sales"”
)
axis(1, at = seq(13, 52, by = 13),
las = 1)
axis(2, at = seq(®, 25, by = 5),
las = 1)

lab <- rep(NA, 52)
lab[seq(4, 52, by = 4)] <- seq(4, 52, by = 4)

lines(trial + rpt,
type = "1")

legend("topright",
legend = c("Trial", "Trial + Repeat"),

1ty = 1:1,
col = c("red", "black"),
cex = 0.75

42

Trial/Repeat Decomposition of Sales

25 — Trial

— Trial + Repeat

15

10

Sales (transactions)

13 26 39 52

Week

An alternative way of plotting the data would be to use a stacked bar chart.

barplot(t(cbind(trial, rpt)),
xlab = "Week",
ylab = "Sales (transactions)",
main = "Trial/Repeat Decomposition of Sales",
legend.text = c("Trial", "Repeat"),
names.arg = lab

43

Trial/Repeat Decomposition of Sales

O Repeat
M Trial

IliiiH HHHH‘ | AW

16 20 24 28 32 36 40 44 48 52

Sales (transactions)
10 15
l

5
I

o -

Week

Next we create a plot that decomposes cumulative sales into its trial, first repeat, and
additional repeat components.

plot(1:52, cumsum(trial),

type = "1%,
col = "red",
xlab = "Week",
ylab = "Sales (transactions)",
xaxt = "n",
yaxt = "n",
ylim = c(@, 350),
main = "Decomposing Cumulative Sales"
)
axis(1, at = seq(13, 52, by = 13),
las = 1)
axis(2, at = seq(®, 350, by = 50),
las = 1)

lab <- rep(NA, 52)
lab[seq(13, 52, by=13)] <- c(13, 26, 39, 52)

lines(cumsum(trial + fr),
type = "1",
col = "blue")
lines(1:52, cumsum(trial + fr + ar),
type = "1",
col = "black")

legend("topleft",

44

legend = c("Trial", "Trial + FR", "Trial + FR + AR"),
1ty = c(1, 1, 1),

col = c("red", "blue", "black"),

cex = 0.75

Decomposing Cumulative Sales

350 | — Trial
— Trial + FR
—— Trial + FR + AR

300

250 —

200 —

150 —

100 —

Sales (transactions)

13 26 39 52

Week

The stacked bar chart version:

barplot(t(cbind(cumsum(trial), cumsum(fr), cumsum(ar))),
xlab = "Week",
ylab = "Sales (transactions)",
main = "Decomposing Cumulative Sales",
legend.text = c("Trial", "FR", "AR"),
args.legend = list(x ='topleft', inset=c(0.01, 0)),
names.arg = lab

45

Decomposing Cumulative Sales

300
|
)
]

O AR 1

@ FR ol
J Hﬁﬁﬁﬁﬁﬁ‘
13 26 39 52
Next we plot cumulative trial as a percent of panel size (sometimes called cumulative

Week
penetration).

250

200
1

Sales (transactions)
100 150
1 l

50
|

plot(1:52, 100 * cumsum(trial) / num_panellists,
type Illll’
xlab = "Week",
ylab = "% Households",

xaxt = "n",

yaxt = "n",

ylim = c(e, 10),

main = "Kiwi Bubbles Cumulative Trial"
)
axis(1, at = seq(13, 52, by = 13),

las = 1)
axis(2, at = seq(@, 10, by = 2),

las = 1)

46

% Households

Kiwi Bubbles Cumulative Trial

10

13 26

Week

39 52

Finally, we create a plot of the percentage of triers making a repeat purchase.

pct_triers_rpting <- 100 * cumsum(fr) / cumsum(trial)
plot(1:52, pct_triers_rpting,

type
xlab
ylab
xaxt
yaxt

ylim =

main

)

.7
"Week",
"“J

ot

o

c(e, 49),

"% Triers Repeating”

axis(1, at = seq(13, 52, by = 13),
las = 1)

axis(2, at
label

S

= seq(@, 40, by = 19),

— C("@%", "10%", "2900", "3600", Il4e%ll),

las = 1)

47

% Triers Repeating

40%

30% —

20%

10% -

0% -

13 26 39 52

Week

[Optional] Exercise

The unit of sales used in these plots is transactions. How would you create plots where
the unit of sales is units purchased?

Exploring time to first repeat

The first step is to create a table that reports how many panellists made a (first) repeat
purchase so many weeks after their trial purchase, broken down by week of trial.

We start by removing the three rows we added to account for the weeks in which no
transactions occurred.

df <- df[-c((nrow(df) - 2):nrow(df)), 1]

Next we create a “week of trial purchase” variable and a variable the counts the number of
weeks between a panellist’s trial and first repeat purchase.

df$trial wk <- rep(-99, nrow(df))

for(i in 1:(nrow(df))){
if (df$dor[i] == 0){
df$trial wk[i] <- df$Week[i]}
}

for(i in 1:(nrow(df) - 1)){
if (df$dor[i + 1] == 1){df$fr_delta[i] <- df$Week[i + 1] - dffWeek[i]}
else {df$fr_delta[i] <- -99
}

}

48

We cannot assume that all the trial and “time from trial to FR” weeks are observed in the
dataset, so we fill in the missing values.

missing trial wks <- setdiff(c(-99, 1:52), unique(sort(df$trial wk)))
for(i in 1:length(missing trial wks)){

df[nrow(df) + 1, 7] = missing_trial wks[i]
}

missing fr_delta <- setdiff(c(-99, ©:51), unique(sort(df$fr_delta)))
for(i in 1:length(missing fr_delta)){

df[nrow(df) + 1, 8] = missing fr_delta[i]
}

We create the desired table.
time_to fr_by trial <- table(df$trial wk, df$fr_delta)

As a final step before creating the desired plot, we create a cumulative version of this table,
focusing on those customers that had 26 weeks after their trial purchase to make a first
repeat purchase.

cum_fr_by trial <- matrix(®, nrow = 26, ncol = 27)
for (i in 1:26){

cum_fr_ by trial[i,] <- cumsum(time_to_fr_ by trial[i + 1, c(2:28)])
}

Now we can create the plot that shows the percentage of triers that have made a first
repeat purchase within 26 weeks of their trial purchase.

time_to_fr <- colSums(cum_fr_by trial) / sum(trial[c(1:26)])

plot(0:26, 100 * time_to fr,

type = "1,
xlab = "Weeks after trial purchase",
ylab = "% Triers",
xaxt = "n",
yaxt = "n"
)
axis(1, at = seq(@, 26, by = 2),
las = 1)
axis(2, at = seq(1l0, 40, by = 10),
las = 1)

49

30

% Triers

10

I I I l l l l l l l l l l l
0 2 4 6 8 10 12 14 16 18 20 22 24 26

Weeks after trial purchase

[Optional] Exercise
Replicate the undocumented time from first repeat to second repeat analysis reported in
solution__chapter_6b.xlsx.

[Optional] Exercise

Reflecting on the time to first repeat analysis we have just undertaken, someone who
made their trial purchase on day 1 of week 2 and their first repeat purchase on day 7 of
week 3 has the same fr_delta as someone who made their trial purchase on day 7 of
week 2 and their first repeat purchase on day 1 of week 3. An alternative (and arguably
more correct) approach would be to create fr_delta off doy. Recreate the time to first
repeat figure using this alternative measure of time between trial and first repeat
purchases.

50

