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This note outlines how to incorporate the effects of covariates,
be they time invariant or time varying, in the gamma-gamma
spend model (Colombo and Jiang 1999, Fader et al. 2005). It is
assumed that the reader is familiar with this model, especially
with the derivations presented in Fader and Hardie (2013).

1 Base Model Assumptions

The gamma-gamma model of spend per transaction is based on the following
three general assumptions:

� The monetary value (e.g., $, £, e) of a customer’s given transaction
varies randomly around their average transaction value.

� Average transaction values vary across customers but do not vary over
time for any given individual.

� The distribution of average transaction values across customers is in-
dependent of the transaction process.

More formally, for a customer with x transactions, let z1, z2, . . . , zx de-
note the value of each transaction.

i) We assume the Zi are iid gamma with shape parameter p and inverse
scale parameter ν. It follows that E(Z | p, ν) = p/ν.

ii) We assume that heterogeneity in ν across customers is captured by a
gamma distribution with shape parameter q and inverse scale param-
eter γ.

�© 2024 Peter S. Fader and Bruce G. S. Hardie. This document can be found at
http://brucehardie.com/notes/045/.
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2 Adding Time-Invariant Covariate Effects

Let w denote the vector of time-invariant covariates that characterize the
customer. (We suppress the customer subscript.) These covariates could
include customer characteristics (e.g., male/female) or factors such as chan-
nel of acquisition. It is very important to note that this vector of covariates
does not include an intercept.

We replace ν with ν = ν0e
−wβ′

(note the − sign), which means

E(Z | p, ν0,β;w) =
p

ν0
ewβ′

.

We assume that heterogeneity in ν0 across customers is captured by a gamma
distribution with shape parameter q and inverse scale parameter γ.

It follows that

E(Z | p, q, γ,β;w) =

∫ ∞

0
E(Z | p, ν0,β;w)g(ν0 | q, γ)dν0

=

∫ ∞

0

p

ν0
ewβ′ γqνq−1

0 e−γν0

Γ(q)
dν0

= pewβ′
∫ ∞

0

γqνq−2
0 e−γν0

Γ(q)
dν0

=
pγ

q − 1
ewβ′

, q > 1. (1)

This reduces to (3) in Fader and Hardie (2013) when β = 0.
In the appendix we document three ways of formulating the likelihood

function for the no-covariate model. For the case of time-invariant covari-
ates, we can take any of these approaches. However, only the first one is
feasible for the case of time-varying covariates. So as to maintain consistency
between the time-invariant and time-varying covariates cases, we present the
following derivation of the likelihood function.

By definition,

L(p, ν0,β | z1, z2, . . . , zx,w) =

x∏
i=1

f(zi | p, ν0e−wβ′
)

=

x∏
i=1

(
ν0e

−wβ′)p
zp−1
i e−ν0e−wβ′

zi

Γ(p)

=

{∏x
i=1 zi

}p−1
e−wβ′px

Γ(p)x
νpx0 e−ν0ye−wβ′

,

where

y =

x∑
i=1

zi
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is the customer’s total observed spend across the x transactions. Next we
integrate over the distribution of ν0:

L(p, q, γ,β | z1, . . . , zx,w)

=

{∏x
i=1 zi

}p−1
e−wβ′px

Γ(p)x

∫ ∞

0
νpx0 e−ν0ye−wβ′ γqνq−1

0 e−γν0

Γ(q)
dν0

=

{∏x
i=1 zi

}p−1
e−wβ′px

Γ(p)x

∫ ∞

0

γqνpx+q−1
0 e−ν0(γ+ye−wβ′

)

Γ(q)
dν

=

{∏x
i=1 zi

}p−1
e−wβ′px

Γ(p)x
Γ(px+ q)

Γ(q)

γq

(γ + ye−wβ′
)px+q

=

{∏x
i=1 zi

}p−1

Γ(p)x
Γ(px+ q)

Γ(q)

(
γ

γ + ye−wβ′

)q ( e−wβ′

γ + ye−wβ′

)px

. (2)

This reduces to the equivalent no-covariate likelihood function, (A1), when
β = 0 (which, as noted in the appendix, is not equivalent to the function
presented in Fader et al. (2005) and Fader and Hardie (2013).)

The posterior distribution of ν0 is

g(ν0 | p, q, γ,β; z1, . . . , zx,w)

=
L(p, ν0,β | z1, z2, . . . , zx,w)g(ν0 | q, γ)

L(p, q, γ,β | z1, . . . , zx,w)

=

{∏x
i=1 zi

}p−1
e−wβ′px

Γ(p)x
νpx0 e−ν0ye−wβ′ γqνq−1

0 e−γν0

Γ(q){∏x
i=1 zi

}p−1

Γ(p)x
Γ(px+ q)

Γ(q)

(
γ

γ + ye−wβ′

)q ( e−wβ′

γ + ye−wβ′

)px

=

(
γ + ye−wβ′)px+q

νpx+q−1
0 e−ν0

(
γ+ye−wβ′)

Γ(px+ q)
. (3)

In other words, the posterior distribution of ν0 is gamma with shape param-
eter px + q and inverse scale parameter γ + ye−wβ′

. Given (1), it follows
that the conditional expectation is

E(Z | p, q, γ,β; z1, . . . , zx,w) =
p
(
γ + ye−wβ′)
px+ q − 1

ewβ′
. (4)

This reduces to (5) in Fader and Hardie (2013) when β = 0.1

1At first glance, it may seem surprising that this reduces to Fader and Hardie’s (2013)
result when the no-covariate likelihood functions are different. We note, however, that
the “offending term” in the likelihood function (

{∏x
i=1 zi

}p−1
/Γ(p)x) cancels out in the

derivation of the posterior distribution. The conditional expectation numbers themselves
will differ due to the different estimates of p, q, γ.
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3 Adding Time-Varying Covariate Effects

Let wi denote the vector of the values of the time-varying covariates at the
ith transaction. As with w, it is very important to note that this vector
of covariates does not include an intercept. We relax the assumption that
a customer’s average transaction value does not vary over time: we assume
Zi ∼ gamma(p, νi) where νi = ν0e

−wiβ
′
. We assume that heterogeneity in ν0

across customers is captured by a gamma distribution with shape parameter
q and inverse scale parameter γ.

It follows that

E(Zi | p, q, γ,β;wi) =
pγ

q − 1
ewiβ

′
, q > 1 . (5)

By definition,

L(p, ν0,β | z1, . . . , zx,w1, . . . ,wx)

=

x∏
i=1

f(zi | p, νi)

=

x∏
i=1

(
ν0e

−wiβ
′)p

zp−1
i e−ν0e−wiβ

′
zi

Γ(p)

=

{∏x
i=1 zi

}p−1
e−p

∑x
i=1 wiβ

′

Γ(p)x
νpx0 e−ν0

∑x
i=1 zie

−wiβ
′
.

To simplify the equation, let

A(x) = e−p
∑x

i=1 wiβ
′

B(x) =

x∑
i=1

zie
−wiβ

′

which gives us

L(p, ν0,β | z1, . . . , zx,w1, . . . ,wx) =

{∏x
i=1 zi

}p−1
A(x)

Γ(p)x
νpx0 e−ν0B(x).

Next we integrate over the distribution of ν0:

L(p, q, γ,β | z1, . . . , zx,w1, . . . ,wx)

=

{∏x
i=1 zi

}p−1
A(x)

Γ(p)x

∫ ∞

0
νpx0 e−ν0B(x)γ

qνq−1
0 e−γν0

Γ(q)
dν0

=

{∏x
i=1 zi

}p−1
A(x)

Γ(p)x

∫ ∞

0

γqνpx+q−1
0 e−ν0(γ+B(x))

Γ(q)
dν

=

{∏x
i=1 zi

}p−1
A(x)

Γ(p)x
Γ(px+ q)

Γ(q)

γq

(γ +B(x))px+q
. (6)
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Note that when wi = w ∀ i, A(x) = e−wβ′px and B(x) = ye−wβ′
, and

(6) reduces to (2).
The posterior distribution of ν0 is

g(ν0 | p, q, γ,β; z1, . . . , zx,w1, . . . ,wx)

=
L(p, ν0,β | z1, z2, . . . , zx,w1, . . . ,wx)g(ν0 | q, γ)

L(p, q, γ,β | z1, . . . , zx,w1, . . . ,wx)

=

{∏x
i=1 zi

}p−1
A(x)

Γ(p)x
νpx0 e−ν0B(x)γ

qνq−1
0 e−γν0

Γ(q){∏x
i=1 zi

}p−1
A(x)

Γ(p)x
Γ(px+ q)

Γ(q)

γq

(γ +B(x))px+q

=

(
γ +B(x)

)px+q
νpx+q−1
0 e−ν0(γ+B(x))

Γ(px+ q)
. (7)

In other words, the posterior distribution of ν0 is gamma with shape pa-
rameter px + q and inverse scale parameter γ + B(x). It follows that the
conditional expectation is

E(Zj | p, q, γ,β; z1, . . . , zx,w1, . . . ,wx;wj)

=
p(γ +B(x))

px+ q − 1
ewjβ

′
, j > x . (8)
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Appendix

There are three ways of formulating the model likelihood function for the
no-covariate gamma-gamma model.

Approach 1—Individual transactions

By definition,

L(p, ν | z1, . . . , zx) =
x∏

i=1

f(zi | p, ν)

=
x∏

i=1

νpzp−1
i e−νzi

Γ(p)

=

{∏x
i=1 zi

}p−1

Γ(p)x
νpxe−νy,

where

y =
x∑

i=1

zi

is the customer’s total observed spend across the x transactions. Integrating
over the distribution of ν gives us

L(p, q, γ | z1, . . . , zx) =
{∏x

i=1 zi
}p−1

Γ(p)x

∫ ∞

0
νpxe−νy γ

qνq−1e−γν

Γ(q)
dν

=

{∏x
i=1 zi

}p−1

Γ(p)x

∫ ∞

0

γqνpx+q−1e−ν(γ+y)

Γ(q)
dν

=

{∏x
i=1 zi

}p−1

Γ(p)x
Γ(px+ q)

Γ(q)

γq

(γ + y)px+q
. (A1)

Approach 2—Total Spend

Given the convolution property of the gamma distribution, it follows that
Y |x ∼ gamma(px, ν). Therefore,

L(p, ν | y, x) = νpxypx−1e−νy

Γ(px)
.

Integrating over the distribution of ν gives us

L(p, q, γ | y, x) = ypx−1

Γ(px)

∫ ∞

0
νpxe−νy γ

qνq−1e−γν

Γ(q)
dν

=
ypx−1

Γ(px)

∫ ∞

0

γqνpx+q−1e−ν(γ+y)

Γ(q)
dν

=
ypx−1

Γ(px)

Γ(px+ q)

Γ(q)

γq

(γ + y)px+q
. (A2)
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Approach 3—Average Spend

The customer’s observed average transaction value is

z̄ =

x∑
i=1

zi/x .

Given the convolution and scaling properties of the gamma distribution, it
follows that Z̄ ∼ gamma(px, νx). Therefore,

L(p, ν | z̄, x) = (νx)pxz̄px−1e−νxz̄

Γ(px)

=
xpx−1

xpx−1

(νx)pxz̄px−1e−νxz̄

Γ(px)

= x
νpx(xz̄)px−1e−νxz̄

Γ(px)

= x
νpxypx−1e−νy

Γ(px)
.

Integrating over the distribution of ν gives us obviously gives us

L(p, q, γ | z̄, x) = x
ypx−1

Γ(px)

Γ(px+ q)

Γ(q)

γq

(γ + y)px+q
. (A3)

This is the approach used by Fader et al. (2005) and Fader and Hardie
(2013).

Are the three approaches equivalent?

As (A2) and (A3) differ by a factor (x) that is independent of the parameter
values, the values of p, q, γ that maximize (A2) will obviously be the same
as those that maximize (A3).

However, (A1) differs from (A2) and (A3) by a factor that is a function

of p,
{∏x

i=1 zi
}p−1

/Γ(p)x in the case of (A2). Therefore, the values of p, q, γ
that maximize (A1) will not be the same as those that maximize (A2) and
(A3).
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