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1 Introduction

Central to diagnosing and/or forecasting the performance of a new FMCG product is the
decomposition of aggregate sales into trial and repeat components, that is,

S(t) = T (t) +R(t)

where S(t) is total cumulative sales for the new product by time t, and T (t) and R(t) are
cumulative trial and repeat sales, respectively, for the same time period.

A given overall aggregate sales history could be the realization of very different pur-
chasing scenarios. For example, a low sales level for a new product could be the result
of: (i) many consumers making a trial purchase but very few of them making a repeat
purchase (because the product does not meet their expectations), or (ii) a low trial rate
but a high level of repeat purchasing amongst the triers (because the product meets a
real need among a relatively small set of buyers). Without a proper trial and repeat sales
decomposition, it is impossible to determine which of these scenarios (or the infinite other
possible combinations of trial and repeat patterns that could result in the same aggre-
gate sales curve) best describes the early sales data. Consequently, the product manager
might have great difficulty in developing an accurate forecast and choosing the appropri-
ate course of action. In short, any forecast of future sales based purely on the aggregate
sales data is going to be highly suspect.

When the researcher is interested in developing a forecast of a new product’s future
sales on the basis of early test market results, mathematical representations of the trial
and repeat components of sales (i.e., T (t) and R(t)) will be developed and calibrated using
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household-level panel data. These individual models can then be used to forecast trial and
repeat sales, from which an overall forecast of the new product’s sales can be generated.
[See Hardie, Fader, and Wisniewski (1998) for a review of models for forecasting T (t).]
While some researchers (e.g., Greene 1974) have proposed models for R(t) based on an
underlying counting process (i.e., directly modeling the number of repeat purchases made
by each household by time t), it is more common to use the so-called ‘depth of repeat’
formulation in which R(t) is decomposed in the following manner:

R(t) =
∞∑

j=1

Rj(t) (1)

where Rj(t) is the cumulative number of consumers that have made at least j repeat
purchases by time t. (For presentational simplicity, we assume that only one unit is
purchased on each repeat purchase occasion. Consequently, repeat sales volume equals
the number of repeat purchase occasions.) When such a framework is utilized, a model
for Rj(t) (j = 1, 2, 3, . . . ) is developed, from which a forecast of R(t) can be generated.

Perhaps the best known depth of repeat model is that proposed by Eskin (1973) — and
further developed by Kalwani and Silk (1980) — which draws on early work by Fourt and
Woodlock (1960). Originally developed for a test market environment, the basic structure
of Eskin’s model has been used in simulated test market models such as BASES (Lin,
Pioche, and Standen 1982). And despite its age, the basic model form is still being used
in commercial test market-based new product forecasting systems — see, for example,
Fader, Hardie, and Stevens (1998). In terms of real-world impact, it is one of the most
important models in the academic new product forecasting literature. However, little is
known about the properties of this model. For example, what insights, if any, can be
derived from the model parameters? Just how accurate and robust are its forecasting
capabilities? What are the limits of its performance (e.g., when does it break down)?
The purpose of this paper is to answer these questions by exploring the properties of this
model.

The remainder of the paper is organized as follows. In section 2, we review Eskin’s
model of repeat buying for new FMCG products, along with Kalwani and Silk’s extensions,
describing the model structure and developing the log-likelihood function used to estimate
model parameters. We then examine the issue of interpreting the model’s parameters,
asking what insights into the structure of the repeat buying process can be gained from
examining their estimated values. In section 4, we explore the forecasting performance of
the model; in particular, we examine how the amount of data used for model calibration
impacts on forecast accuracy and seek to understand whether or not there are any market
environments in which the model will always produce inaccurate forecasts. The paper
concludes (section 5) with a brief discussion of the implications of the results of the
empirical analyses for developers of new product forecasting models.
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2 The Eskin/Kalwani & Silk Model

Starting with the depth of repeat decomposition of equation 1, Eskin (1973) contends
that further insights can be gained by decomposing Rj(t) in the following manner:

Rj(t) =
t∑

tj−1=1

F (tj | tj−1) [Rj−1(tj−1)−Rj−1(tj−1−1)], j = 1, 2, . . . (2)

where F (tj | tj−1) is the cumulative proportion of consumers who have made a jth repeat
purchase by time tj, given that their j − 1th repeat purchase occurred at time tj−1.1

(j = 0 denotes the trial purchase.) Note that F (tj | tj−1) can also be interpreted as the
probability that a consumer who made a j − 1th repeat purchase at time tj−1 has made
a jth repeat purchase by time tj (i.e., the cdf of the time to the jth repeat purchase,
conditional on the time of the j − 1th repeat purchase). We therefore let the random
variable Tj denote the time (since the launch of the new product) at which a household
makes its jth repeat purchase, the realization of which is tj.

After examining a number of empirical repeat-purchase curves (i.e., F (tj | tj−1)), Eskin
notes three characteristics:

i. The curve for each depth of repeat class (j) exhibits an exponential growth pattern
leveling off to an asymptote — as is typically associated with a cumulative trial
curve.

ii. Across depth of repeat classes, the curves are approximately parallel.

iii. The asymptote increases, at a decreasing rate, as j increases; this means, for ex-
ample, that the proportion of consumers who have made their jth repeat purchase
within 52 weeks of their j − 1th repeat purchase increases with j.

Based on these observations, Eskin proposes that the Fourt and Woodlock (1960)
model of trial be used to model the cumulative depth of repeat curves. Using the contin-
uous time representation of the Fourt and Woodlock model, we have

F (tj | tj−1) = pjtj−1 [1 − e−λjtj−1 (tj−tj−1)] + δjtj−1(tj − tj−1) (3)

Given this model formulation, Eskin makes three assumptions in order to come up
with a parsimonious model:

1Time is measured on the positive real line, where the origin corresponds to the launch of the new
product. By convention, integer values correspond to the end of each week; for example, t = 2 corresponds
to the end of the second week since the launch of the new product. Current data collection technology
is such that time of purchase is recorded on the real time line (e.g., on a daily or even hourly basis).
However, in implementation, the model processes time in an integer manner (i.e., the data are treated as
grouped data). Eskin (1973, footnote 2, p. 118) notes that when data are processed at a weekly level, a
first repeat purchase cannot be made in the same week as its corresponding trial purchase. When such an
event does occur in the data, the first repeat purchase must be coded as occuring in the following week.
Following this convention, the earliest a jth repeat purchase could occur is in week j+1. Consequently,
the limits of the summation in equation 2 should really be j and t−1. The logic is as follows: the earliest
time a j − 1th repeat purchase could have occured is week j, while the latest time such a purchase could
have occurred for a jth repeat to occur in week t is week t − 1. The summation limits of 1 and t in
equation 2 are used to be consistent with the corresponding expression given in Eskin (1973).
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i. λjtj−1 = λ ∀j, tj−1. This implies that the average interpurchase times are constant
across all depth of repeat classes.

ii. δjtj−1 = δ ∀j, tj−1. As this linear ‘stretch factor’ is designed to capture heterogeneity
in consumer buying rates, this implies that the level of heterogeneity is constant
across all depth of repeat classes.

iii. The ultimate conversion proportions, pjtj−1 , follow the pattern pjtj−1 = p∞(1 −
e−θj) for j = 2, 3, . . . . Initial analyses reported in Eskin (1973) indicate that p∞ is
less than 1. However, subsequent experience reported in Eskin and Malec (1976)
indicates that p∞ ≈ 1. (This is consistent with the authors’ own experience with
such models.)

To use this model for forecasting purposes, the parameters λ, δ, p1, p∞, and θ are
estimated using repeat purchasing data over a specified calibration period, pooling across
all observed depth of repeat classes. Using equation 3, future values of F (tj | tj−1) are
predicted, including for higher depth of repeat classes, from which forecasts of Rj(t)
and therefore R(t) are derived for future periods using equations 2 and 1, respectively.
(Clearly such forecasts are conditional upon a forecast of trial purchasing, which appears
in equation 2 when j = 1.)

The δ term above was originally proposed by Fourt and Woodlock as a means of
accounting for heterogeneity in consumer buying rates. An alternative — and less ad-
hoc — approach is to explicitly model heterogeneity using a mixing distribution, such
as the gamma distribution (Anscombe 1961). Such an approach is proposed by Kalwani
and Silk (1980), who assume: (i) time to conversion from the j − 1th to the jth depth of
repeat class is distributed exponentially with rate parameter λj, (ii) the rate parameter is
distributed according to a gamma mixing distribution with shape parameter rj and scale
parameter αj, and (iii) only a proportion pj of those who made a j − 1th repeat purchase
will eventually make a jth repeat purchase. The resulting mixture model is:

F (tj | tj−1) = pj

[
1 −

(
αj

αj + tj − tj−1

)rj
]

(4)

While Kalwani and Silk (1980) examine the properties of this model, they do not fully
explore its use as a replacement for equation 3. Eskin’s assumptions regarding λ and
δ are equivalent to assuming constant r and α across depth of repeat classes. Adding
his assumption regarding the development of the ultimate conversion proportions, pj, we
arrive at the following model as a replacement to equation 3:

F (tj | tj−1) = pj

[
1 −

(
α

α+ tj − tj−1

)r ]
, j ≥ 1 (5)

where

pj =
{
p1 if j = 1
p∞(1 − e−θj) otherwise (6)

We will call this specification the E/KS model, after Eskin, and Kalwani and Silk.

Estimates of the parameters r, α, p1, p∞, and θ are obtained using maximum likelihood
(ML) estimation in the following manner. Let Rj(i, i′) be the number of consumers who
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made their j − 1th repeat purchase in week i′ who have made a jth repeat purchase by week
i; it follows that Rj(t) =

∑t
i′=1Rj(t, i′).2 Let Tc be the length of the model calibration

period (in weeks), and Jc the maximum depth of repeat class observed in the calibration
period data. Recognizing the grouped nature of the data, the log-likelihood function is:

LL =
Jc∑

j=1

Tc−1∑
tj−1=j




Tc∑
tj=tj−1+1

[Rj(tj, tj−1) −Rj(tj − 1, tj−1)] ×

ln
[
pj

(
α

α+ (tj − 1) − tj−1

)r

− pj

(
α

α+ tj − tj−1

)r]

+ [Rj−1(tj−1) −Rj−1(tj−1 − 1) −Rj(Tc, tj−1)] ln
[
1 − pj + pj

(
α

α+ Tc − tj−1

)r ]}
(7)

where pj is given by equation 6. Maximizing this likelihood function using standard
numerical optimization methods gives us the ML estimates of the model parameters.

3 Interpreting Model Parameters

How can we interpret the five parameters — r, α, p1, p∞, and θ —associated with the
E/KS model? According to Eskin, and Kalwani and Silk, it appears that there is a
nice behavioral story associated with them. For example, p1 and pj, j = 2, 3, . . . (as
calculated using p∞ and θ) should be interpreted as the proportion of consumers who will
ultimately convert from one repeat class to the next. We may also try to interpret the
estimated parameters of the gamma distribution in the usual manner. For example, the
mean buying rate for the new product should be given by r/α. Furthermore, r is often
interpreted as a measure of consumer heterogeneity — the coefficient of variation for the
gamma distribution is 1/

√
r, which means that the higher the value of r, the lower the

degree of heterogeneity across the repeat buying consumers.

While we can try to ascribe such meanings to the model parameters, they do not reflect
the true underlying process. To illustrate this, let us consider purchasing in a world
with no dynamics in the purchasing process; that is, a stationary purchasing process
as characterized by the NBD model. Modeling repeat buying as a Poisson counting
process with gamma heterogeneity (i.e., the NBD model) is equivalent to modeling it as a
(stationary) exponential timing process with gamma heterogeneity (Gupta and Morrison
1991). We create 20 simulated datasets, each containing 52 weeks of purchasing by 500
households, in which there are no dynamics in the purchasing process. One half of the
simulated datasets correspond to the gamma parameter pair r = 0.5 and α = 10, while
the other half correspond to the parameter pair r = 1.5 and α = 30.

Each simulated dataset is created in the following manner. Starting with household
#1, a value of λ is drawn from the gamma distribution. Using this value of λ, an expo-
nential interpurchase time is simulated, giving us the household’s value of t1, the time of
its first repeat purchase. If t1 > 52, the household is deemed to have made zero repeat
purchases and the procedure moves on to the next household. On the other hand, if

2In light of the points raised in footnote 1, it would be more correct to write these summation limits
as j and t − 1.
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t1 < 52, another exponential interpurchase time is simulated and added to t1 to give us
the household’s simulated value of t2, the time of its second repeat purchase. If t2 > 52,
the household is deemed to have made only one repeat purchase and the procedure moves
on to the next household. If t2 < 52, the whole process continues for this household
until tj > 52, at which time the procedure moves to the next household. For the new
household, a value of λ is drawn from the same gamma distribution, and so on, until the
purchasing by all 500 households has been simulated.

For each simulated dataset, we estimate the parameters of the E/KS model by max-
imizing its log-likelihood function (equation 7). Four different calibration period lengths
(Tc) are examined: 13, 26, 39, and 52 weeks. For each parameter set and calibration pe-
riod, we compute the average of the estimated model parameters, along with the average
of the estimated mean of gamma distribution. These numbers are reported in Table 1.

True Tc r α p1 p∞ θ r/α

r = 0.5, α = 10

13 6.503 40.189 0.420 1.000 2.936 0.159
26 3.615 25.258 0.525 1.000 1.856 0.151
39 2.100 14.011 0.591 1.000 1.383 0.152
52 1.788 11.890 0.637 1.000 1.675 0.153

r = 1.5, α = 30

13 14.715 164.208 0.618 0.995 4.440 0.089
26 13.720 166.183 0.707 1.000 2.781 0.082
39 6.525 88.232 0.792 1.000 4.106 0.077
52 4.661 64.659 0.838 1.000 5.528 0.077

Table 1: Average Estimated E/KS Model Parameters

If the apparent behavioral story associated with the parameters of the E/KS model is
true, we should find p̂1 = p̂∞ = 1.0 and θ̂ → ∞ in all cases, in accordance with the sta-
tionary Poisson process. In sharp contrast to this stationary data generating process, the
parameter estimates strongly suggest the presence of dynamics in the consumers’ repeat
buying behavior for the new product. For example, referring to the row corresponding
to Tc = 52 in the r = 0.5, α = 10 condition, the following story would be told: Approx-
imately 64% (p1) of the triers will eventually make at least one repeat purchase. 96%
of first repeaters (p∞(1 − e−θj)) will eventually make a second repeat purchase, and the
conversion proportion for the third depth of repeat class is 99%. Within each depth of
repeat class, the average buying rate (r/α) is 0.153 (i.e., every six and a half weeks).

However, the true nature of the underlying data is such that there are absolutely no
dynamics (e.g., “dropping out” of the market) in the consumers’ repeat buying behavior
for the new product. The true, underlying average buying rate is low — 0.05 in both
conditions — which means that there are a number of households that make zero purchases
over a 52-week time frame. Rather than correctly capturing this pattern through the r
and α parameters, the model is using the p1 parameter to allow for these apparent non-
buyers. (Given this phenomenon, it is not surprising that the estimated mean buying
rate is grossly over-estimated.) Consequently, we are interpreting the lack of buyers in
the calibration period as evidence of a structural characteristic of the market — that is,
a group of households who did not like the new product and therefore will never make
a repeat purchase — when in actual fact all households will eventually buy. It is simply
that the true average buying rate is low.
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This point is further illustrated by looking at the differences across the parameter set
and calibration period conditions. As the calibration period lengthens, the percentage of
households in the simulated panel that have not yet made a (repeat) purchase decreases.
It is therefore not surprising to see the estimate of p1 increasing as Tc lengthens. (It
is interesting to note the relative stability of the estimated mean of the gamma mixing
distribution (r/α) — despite the variation the estimates of r and α — as the length of the
calibration period increases, further demonstrating the role played by the p1 parameter.)

We also note that the estimates of p1 are larger in the r = 1.5, α = 30 condition.
When r < 1, the gamma density is strictly decreasing from an infinite peak at 0. On the
other hand, when r ≥ 1, the mode of the gamma density occurs at (r − 1)/α. Therefore,
the r = 0.5 condition will see more households with low values of λ than the r = 1.5
condition, and therefore (relatively) more households not making any purchase in the 52
week simulation period. It follows that larger estimated values of p1 (for a given Tc) are
observed in the r = 1.5, α = 30 condition.

In conclusion, what appears to be a plausible set of interpretations for the E/KS
model parameters is in fact non-existent. Thus when evaluating this model in terms
of its ability to provide insights into the underlying buying behavior of the market, it
is very poor. Even for a completely stationary market, the parameter estimates tell a
misleading story of dynamics in repeat buying behavior. And as we move from a purely
stationary market (i.e., NBD) to a more realistic one that incorporates nonstationarity,
we would expect these problems with parameter interpretability to become even worse.
Furthermore, the nature and extent of the biases in the estimated values of the parameters
are somewhat unpredictable (e.g., they vary based on characteristics of the market such
as the degree of consumer heterogeneity).

But despite all these problems with parameter interpretability, we should not discard
the model just yet. After all, the primary motivation for deriving and using a model such
as E/KS is to generate a medium-term sales forecast for the new product. If the model can
provide accurate forecasts — even if the associated parameters are completely useless —
then it might still be a perfectly acceptable model from an ‘engineering’ perspective. With
this objective in mind, we now turn our attention to the issue of assessing the forecasting
performance of the E/KS model across a broad set of nonstationary (simulated) markets.

4 Examining Forecasting Performance

For any market researcher interested in using the E/KS model to generate repeat sales
forecasts, a key implementation question concerns how many weeks of data are needed
for model calibration in order to generate a ‘good’ forecast (i.e., what value Tc should
take). The length of calibration period is of great interest to managers — test markets
are a costly exercise, and the associated costs increase with the duration of the test, as
do the opportunity costs of not “going national” earlier. Moreover, longer test periods
give competitors more of a chance to evaluate the performance of the new product and
possibly launch a similar product sooner than would normally be expected.

Eskin (1973) provides some initial insights into this problem. In his empirical analysis,
he considers models based on calibration periods of 12, 24, and 52 weeks of data, and
examines the forecasts for different periods out to a maximum of 52 weeks from product
launch. As would be expected, predictions based on a 12 week calibration period are the
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worst performers — see Eskin (1973, pp. 123–4) for a complete discussion of his findings.
However, we cannot draw any general conclusions from Eskin’s work since only one new
product dataset is examined.

In order to explore the overall forecasting performance of the E/KS model, along with
the impact of Tc on forecast quality, we will use a set of simulated datasets. The primary
reason for using simulated datasets is that it enables us to explore the robustness of the
E/KS model in many different market settings. The simulated datasets are generated
using an advanced model of repeat buying for a new FMCG product recently proposed
by Fader and Hardie (1998). We now turn our attention to this model.

4.1 The NSEG Model

It is common to model repeat buying behavior in mature FMCG markets using the NBD
model (Ehrenberg 1988), which assumes that a consumer’s underlying buying rate is con-
stant (i.e., stationary). If we think about the repeat buying of a new product during the
early phase of its life, we expect there will often be a period of instability during which
consumers’ preferences for the new product are evolving; that is, there is some nonstation-
arity in consumers’ underlying buying rates. As consumers gain more experience with the
product, we would expect their preferences to “settle down” and therefore their buying
patterns can then be better characterized by the usual NBD model.

Starting with the aforementioned exponential-gamma model, the timing counterpart
of the counting NBD model, Fader and Hardie (1998) propose a nonstationary extension,
which they call the nonstationary exponential-gamma, or NSEG, model. Nonstationarity
is modeled using an individual-level renewal process for the buying rates — similar to
that which lies at the heart of Howard’s Dynamic Inference Model (Howard 1965).

The NSEG model is based on five assumptions:

i. The probability of a household that made a trial purchase ever making a repeat
purchase is π.

ii. Interpurchase times are distributed exponentially with rate parameter λ.

iii. Household-level purchase rates, λ, are distributed across the population according
to a gamma distribution with shape parameter r and scale parameter α. (The
parameters of this distribution are time-invariant.)

iv. Following its jth repeat purchase, a household renews its value of λ with probability
γj. The depth of repeat-specific renewal probability — constant across households
— is given by γj = 1 − ψ(1 − e−θj).

v. At each renewal, a household receives a value of λ = 0 with probability φ. With
probability 1−φ, the household draws a new value of λ, independent of its previous
one, from the same gamma distribution.

The first assumption is consistent with the notion of the p1 parameter in the E/KS
model. (However, because of the way the model is formulated, it does not spuriously
capture the effects of heterogeneity, as is the case with the E/KS model.) The fourth
assumption sees the use of a formula similar to that for pj in equation 6, but the purpose
is slightly different. The logic behind this expression for γj, the probability that a renewal
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occurs at depth of repeat level j, is as follows: we would expect that the probability of
a consumer revising her preferences following a purchase (and consumption) experience
would decrease as she gains more experience with the new product (i.e., as she moves to
a higher depth of repeat level). Looking closely at the equation for γj, we note that as j
increases, γj tends to 1−ψ. Therefore, if ψ = 1, the probability of a renewal tends to zero
as a consumer moves to higher depth of repeat levels; in other words, the model evolves
to a stationary process which we interpret as the stabilization of consumer preferences. If
ψ < 1, individual consumer preferences do not stabilize — which means there is long-term
nonstationarity in the marketplace. The fifth assumption is presented as a paramorphic,
as opposed to strictly behavioral, representation of how preferences for the new product
evolve. The “spike at zero” — receiving a value of λ = 0 with probability φ — is simply a
mechanism by which consumers can “drop out” of the market for the new product, even
after making several repeat purchases. Drawing a value of zero upon a renewal is viewed
as being equivalent to rejecting the new product from future purchase consideration.

Reflecting on assumptions (iv) and (v), we see that the probability of a randomly
chosen household ever making a jth repeat purchase, conditional on the fact they have
made a j − 1th repeat purchase, is 1 − γj−1φ for j = 2, 3, . . . . Thus the NSEG model
can formally (and directly) capture a phenomenon the E/KS model attempts to capture
indirectly via the pj terms. Unlike the E/KS model, the parameters of the NSEG model
are fully interpretable, so their estimates provide insights into the underlying buying
behavior of the market. (Furthermore, Fader and Hardie (1998) show that the NSEG
parameters are robust across calibration periods of different lengths, unlike the patterns
for the E/KS model seen earlier in Table 1.)

The NSEG model is a very flexible model that can capture many patterns of repeat
buying behavior. Probably the simplest model of repeat buying which it nests is the NBD
model. If γj = 0 ∀j, we have a stationary process. (This is associated with θ → ∞ and
ψ = 1.) Furthermore, if π = 1 and φ = 0, we have the two parameter exponential-gamma
model of stationary repeat buying behavior.3 Relaxing the assumption that π = 1 gives
us the timing equivalent of NBD with “spike at zero” model where 1−π is the size of the
structural “never buyers” segment.

Relaxing the constraint that γj = 0 ∀j results in a model which can capture various
forms of nonstationarity in repeat buying behavior. If ψ = 1, the probability of a renewal
occurring tends to zero as a consumer moves to higher depth of repeat levels. This means
that the initial nonstationary repeat buying process evolves to a stationary process as the
product transitions from being “new” to “established”. Therefore the NSEG model is
consistent with the notion of nonstationary buying behavior during the early stages of a
new product’s life and stationary buying behavior — as characterized by the NBD model
— once it has become established in the marketplace. If ψ < 1, the repeat buying process
is always nonstationary as γj > 0 ∀j. In particular, if θ → ∞, the probability of renewal
is constant (1 − ψ) across all depth of repeat levels, while for small θ, the probability of
renewal tends to the constant 1−ψ as a consumer moves to higher depth of repeat levels.

3When we fit the NSEG model to stationary exponential-gamma data (such as that used in Section 3),
the underlying parameters are recovered (e.g., the parameters that capture the effects of nonstationarity
indicate the absence of nonstationarity) — cf. the E/KS model. The reason for this is that the “dropping
out” phenomenon, along with other forms of nonstationarity, are formally modeled at the household-
level, with the household-level likelihood function explicitly accounting for the dependence in buying
rates across purchases. In contrast, the E/KS model ignores the dependency across purchases for any
given household.
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The ability of the NSEG model to capture a number of different repeat buying patterns
makes it the ideal base for a simulation analysis designed to gain insight into the properties
of the E/KS model.4

4.2 Simulation Design

In order to use the NSEG model to simulate new product purchasing, we must first
specify the six model parameters — π, r, α, ψ, θ, φ. The approach taken is as follows. We
first specify two buying rate conditions, corresponding to a fast and slow purchase cycle.
The ‘fast’ condition assumes an average interpurchase time of 4 weeks while the ‘slow’
condition corresponds to an average interpurchase time of 20 weeks (i.e., r/α of 0.25 and
0.05, respectively). We then specify three heterogeneity conditions, r = 0.5, 1.0, and 1.5,
representing (relatively) high-to-low heterogeneity, respectively. (This range of values is
consistent with commonly observed levels of gamma heterogeneity (Fader and Hardie
1998, Morrison and Schmittlein 1988).) This implies six sets of values for r and α.

Beyond these two structural characteristics of each simulated market, we introduce
different types of nonstationarity using the remaining four NSEG parameters, π, φ, ψ,
and θ. Since the first three of these parameters can only take on values in the interval
[0, 1], we make three independent draws from a uniform distribution to obtain their values.
The θ parameter is determined via a draw from the exponential distribution with scale
parameter 1. We repeat this process 25 times. Each of these vectors of π, φ, ψ, θ are then
combined with each of the six r, α combinations to yield 150 different sets of parameters
from which the simulated datasets are created.

The specific values of π, φ, ψ, and θ are reported in Table 2. We see a wide variety
of ‘market conditions’, with differing levels of nonstationarity and likelihood of ultimate
rejection for the new product. For example, with draw 5, almost 63% of triers (π) will
eventually make at least one repeat purchase. The probability of a renewal occurring after
the first repeat purchase is 0.377 (γj = 1 − ψ(1 − e−θj)). By the fifth repeat purchase,
this probability has declined to 0.079, close to the equilibrium probability of renewal of
0.076 (1 − ψ). Consequently, repeat buying behavior becomes relatively stationary. On
any given renewal, there is less than a 5% chance (φ = 0.044) of the consumer rejecting
the new product. Therefore, 99.7% (1 − γjφ) of those consumers who make a fifth repeat
purchase will eventually make a sixth repeat purchase.

On the other hand, draw 19 represents a completely different type of new product.
Almost 98% (1 − π) of triers reject the new product and never make a repeat purchase.
Of those who do make a repeat purchase, the chance of subsequent rejection of the new
product is high. The probability of a renewal occuring after the first purchase is a high
0.843. Whenever a renewal occurs, there is a 19% chance (φ) of the consumer rejecting the

4The reader may ask why a researcher would choose to use the E/KS model, when a model such
as NSEG avoids the problems of parameter interpretability. The answer is due to differences in the
ease of implementing each model. The parameters for the E/KS model can be obtained in a simple
modeling environment such as Excel. On the other hand, the NSEG model requires the use of a more
general software package such as MATLAB. In such a modeling environment, estimating the E/KS model
parameters and generating sales forecasts takes a few seconds using a mid-level PC, compared to several
hours for the NSEG model. Therefore, if the analyst is only interested in generating sales forecasts,
the E/KS model merits serious consideration. Furthermore, incorporating covariate effects in the E/KS
model is a relatively straightforward exercise, and the resulting model can still easily be implemented in
Excel. This is not the case for the NSEG model.
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Draw π φ ψ θ Draw π φ ψ θ
1 0.615 0.792 0.922 0.304 14 0.067 0.468 0.564 2.326
2 0.331 0.583 0.492 1.312 15 0.964 0.601 0.093 1.622
3 0.866 0.180 0.480 1.943 16 0.426 0.825 0.123 0.074
4 0.472 0.370 0.914 0.150 17 0.663 0.890 0.631 2.793
5 0.626 0.044 0.924 1.121 18 0.070 0.098 0.730 0.400
6 0.956 0.581 0.143 0.400 19 0.026 0.189 0.235 1.106
7 0.158 0.572 0.058 0.513 20 0.427 0.482 0.266 0.726
8 0.400 0.878 0.742 0.871 21 0.932 0.910 0.405 0.435
9 0.776 0.303 0.517 1.839 22 0.539 0.048 0.047 1.446

10 0.497 0.002 0.518 5.956 23 0.457 0.495 0.643 0.537
11 0.387 0.523 0.003 0.299 24 0.172 0.746 0.622 0.084
12 0.061 0.089 0.091 0.383 25 0.835 0.578 0.287 0.415
13 0.904 0.477 0.155 0.046

Table 2: Simulation Model Parameters

new product. Even in equilibrium (j → ∞), the probability of a (surviving) consumer
rejecting the product after a repeat purchase is almost 15% (φ(1 − ψ)). Clearly this
simulated product is a failure.

For each of the 150 parameter sets, we create one dataset of simulated purchasing by
500 households over a 52 week period. Each simulated dataset is created in the following
manner. Starting with household #1, the simulation begins by drawing a uniform random
variate to determine whether it will ever make a repeat purchase (with probability π).
If this is the case, a value of λ is drawn from the gamma distribution. Using this value
of λ, an exponential interpurchase time is simulated, giving us the household’s simulated
value of t1, the time of its first repeat purchase. (We assume t0 = 0 for all households.) If
t1 > 52, the household is deemed to have made zero repeat purchases and the procedure
moves on to the next household. If t1 < 52, a uniform random number is drawn to
determine whether the household retains its value of λ (with probability 1−γ1) or whether
a renewal occurs (with probability γ1), in which case a new value of λ is drawn. Another
uniform random number is drawn in the process of determining the new value of λ. With
probability φ, a value of λ = 0 is drawn and the household is deemed to have rejected
the new product (and the procedure moves on to the next household). If the new value
of λ is drawn from the gamma distribution (with probability 1 − φ), or no renewal has
occurred, another exponential interpurchase time is simulated and added to t1 to give us
the household’s simulated value of t2, the time of its second repeat purchase. If t2 > 52,
the household is deemed to have made only one repeat purchase and the procedure moves
on to the next household. If t2 < 52, the whole process continues for this household until
tj > 52 or a value of λ = 0 is drawn when a renewal occurs, at which time the procedure
moves to the next household. For the new household, a uniform random variate is drawn
to determine whether it will ever make a repeat purchase (with probability π), and so on,
until the purchasing by all 500 households has been simulated.

Across the 150 simulated datasets, the average number of repeat purchases is 487,
ranging from a maximum of 2943 to a minimum of 14. This broad range suggests that we
have captured a wide variety of market conditions, which should provide a rigorous and
generalizable test of the forecasting performance of the E/KS model.
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4.3 Results

For each of the 150 simulated datasets, we estimate the parameters of the E/KS model by
maximizing its log-likelihood function (equation 7) for each of three different calibration
period lengths (Tc = 12, 24 and 52 weeks) chosen to be consistent with Eskin (1973).
In all cases, the model parameters are used to create forecasts for the 52 week period
using equations 1, 2, 5, and 6. The accuracy of each forecast is measured by the absolute
percentage error in the year-end sales estimate — hereafter APE 52.5 (For Tc = 52, we
are actually measuring fit.) In total, 450 different models are estimated and the associated
forecasts generated.

We divide the results into two groups, corresponding to the fast and slow purchase
cycle conditions. Within each group, we compute the average APE 52 for each level of
Tc and r, averaging across the 25 simulated datasets associated with each cell. These
numbers are reported in Table 3.

Slow Purchase Cycle Fast Purchase Cycle
Tc = 12 Tc = 24 Tc = 52 Tc = 12 Tc = 24 Tc = 52

r
0.5 23.1% 9.0% 1.5% 11.7% 6.7% 2.0%
1.0 22.4 6.9 1.3 17.9 5.8 2.1
1.5 26.2 9.5 1.6 14.6 5.9 1.9

Table 3: Average APE 52 by Product Characteristics and Tc

The first thing we note is how well the E/KS model fits the ‘true’ data when using
the full 52 weeks to calibrate the model (i.e., Tc = 52), with an average APE 52 of 1.6%
and 1.9% for the slow and fast purchase cycle conditions, respectively. As we look across
the entire table, we can draw three key conclusions:

• Impact of Tc: Not surprisingly, the quality of the forecasts deteriorates as the cali-
bration period length shortens. However, the forecasts generated with 24 weeks of
data are quite accurate. It is very encouraging that the slow-cycle products (with a
mean interpurchase time of 25 weeks between repeat purchases) can be forecast so
well with only 24 weeks of calibration data.

• Purchase Cycle Effects: When shorter calibration periods are used, the E/KS model
generates much more accurate forecasts in fast moving categories. In and of itself,
this is not too surprising, as we will generally observe more repeat purchases than
for products in slower moving categories. What is surprising, however, is that the
forecast quality increases at a faster rate for slow-cycle (compared to fast-cycle
products) as the calibration period lengthens. In fact, when using the full 52 weeks
of data for model calibration, the slow-cycle products actually show a slightly better
fit than the fast-cycle ones, although this observation has little practical value from
a forecasting perspective.

• Impact of Heterogeneity: There are no significant main effects or interactions in-
volving the heterogeneity (r) conditions. Thus despite the fact that different levels

5A commonly used alternative measure is Mean Absolute Percentage Error (MAPE). As the qualitative
results mirror those of APE 52, we only report the numbers associated with the latter measure.
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of heterogeneity can generate markedly different biases in the estimated E/KS pa-
rameters (as seen in Table 1), there is no associated impact on the E/KS model
forecasts.

The moderate size of most of these errors offers some encouragement about the use-
fulness of the E/KS model for forecasting purposes. Beyond the accuracy of the model’s
forecasts, another relevant issue is the degree of bias (i.e., systematic over- or under-
prediction). The APE 52 error measure does not give us any insight as to whether or not
any such biases exist in the forecasts produced by the E/KS model. In order to examine
this, we determine, for each of the 450 datasets (150 parameter combinations × 3 levels of
Tc), whether the forecast generated by the E/KS model under- or over-predicts year-end
sales. As with Table 3, we divide the results into two groups, corresponding to the fast
and slow purchase cycle conditions. Within each group, we compute the percentage of
cases in which the E/KS model under-predicted week 52 sales for each level of Tc and r,
and report these numbers in Table 4.

Slow Purchase Cycle Fast Purchase Cycle
Tc = 12 Tc = 24 Tc = 52 Tc = 12 Tc = 24 Tc = 52

r
0.5 56% 44% 100% 56% 48% 100%
1.0 64 48 100 60 36 100
1.5 60 60 100 48 36 100

Table 4: Percent Of Models Under-Predicting by Product Characteristics and Tc

The most notable bias in this table is also the least consequential. Specifically, the
models utilizing 52 weeks of calibration data underestimate the actual year-end sales
level in every case. But because the magnitude of these errors, as seen in Table 3, is
so small, there is little reason for concern. For the remainder of the table, there is no
substantial bias in the predictions. There are some minor trends evident: (i) the 12-week
models tend to show slight over-forecasts, (ii) the 24-week models tend to produce under-
forecasts, and (iii) the slow purchase cycle products under-forecast slightly more often
than the fast-cycle ones. But these differences are not very large in magnitude, and they
do not seem to combine together in any harmful ways. And as before, there are no clear
associations with the different levels of heterogeneity.

In summarizing these forecast results, we see a dramatically different picture than the
one shown in our earlier discussion of parameter interpretability. The E/KS model tends
to produce accurate and unbiased forecasts that appear to be quite robust across a variety
of product characteristics and nonstationarity conditions.

Beyond our reporting of average values across market conditions, it is also instructive
to examine some specific cases to help understand the factors that may limit the model’s
forecasting performance. An attractive feature of using simulated, as opposed to real, data
is that it provides us with a sufficient diversity of market environments so that additional
insights into the capabilities of the E/KS model can be obtained. In particular, are there
any market environments in which the model breaks down?

At the heart of the simulation are the two buying rate conditions (a slow versus fast
purchase cycle), three different levels of consumer heterogeneity, and the 25 sets of the
parameters π, φ, ψ and θ. For each of the 150 ‘market conditions,’ we compute the
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average value of APE 52 across the three model runs associated with each of the three
calibration conditions (Tc). The distribution of these averages is presented in Figure 1.
While the E/KS model performs very well overall, it appears that there may be some
market environments where this is not the case.
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Figure 1: Distribution of Average APE 52 Across Simulation Conditions

To gain further insight into this issue, we investigate the simulation draws that consis-
tently result in bad forecasts. For instance, the five environments that comprise the right
tail of Figure 1 (i.e., APE 52 ≥ 25%) stem from draws 7, 12, 18, and 19 (twice) in Table 2.
In carefully examining these parameter values, one striking characteristic emerges — in
all four cases, the value of the π parameter takes on small values (π < 0.16). Furthermore,
four of the five datasets with 20% ≤ APE 52 < 25% also have π < 0.2. Recall that this
parameter conveys the proportion of triers who will eventually make at least one repeat
purchase. Since the majority of triers in these scenarios fail to make a repeat purchase,
these simulated ‘products’ are all destined to be failures.

A low value of π is a sufficient (but not necessary) condition for a low level of overall
repeat purchasing, especially for Tc < 52.6 Indeed, beyond the association observed for the
π parameter, there is a fairly strong relationship between APE 52 and the inverse of the
number of repeat purchases associated with each of the 150 unique datasets (ρ̂ = 0.467).
In other words, successful products are easier to forecast than unsuccessful ones. This
suggests an interesting type of ‘double jeopardy’: not only do successful products have
better prospects for long-run profitability, but they will also tend to receive more accurate
forecasts than products with lower sales levels.

In any event, this relationship is the only pattern that emerged in our investigation
of the datasets with inaccurate forecasts. There appear to be no other systematic factors
that impact the ability of the E/KS model to make reasonable estimates of a new product’s
sales performance. Once again, the absence of such factors points to the robustness and
flexibility of the E/KS model specification.

6This limited amount of data can lead to relatively unreliable parameter estimates, thus resulting in
poor forecasts. Consequently, the problem of poor forecasts in such an environment should not be viewed
as a weakness of the E/KS model; we would expect any model for R(t) to have similar problems.
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5 Conclusions

The so-called E/KS model of repeat buying for new FMCG products presented in this
paper is a natural integration of early work by Eskin (1973) and Kalwani and Silk (1980).
The basic structure of this model has been widely used in various real-world new product
forecasting systems. However, very little has been known about the properties of the
model. This paper has sought to address this knowledge gap.

As originally presented, the parameters of the E/KS model seemed to offer appealing
interpretations that could convey useful diagnostics to managers. For example, the pj

parameters were intended to be interpreted as the percentage of consumers who will
eventually make a jth repeat purchase, given a j − 1th repeat purchase. However, our
analysis demonstrates that this is clearly not the case — even for a completely stationary
market, the parameter estimates tell a misleading story of dynamics in repeat buying
behavior. Therefore, from the perspective of providing insights into the underlying buying
behavior of the market, the E/KS model fails.

However, this does not mean that the model should be discarded. The analysis pre-
sented in this paper demonstrates that, from a forecasting perspective, the E/KS model is
a robust and flexible model capable of generating good forecasts of a new product’s repeat
sales. It only appears to produce poor forecasts for new products that exhibit high levels
of post-trial consumer rejection. This leads to low repeat sales levels, making it difficult
to reliably estimate the model’s parameters, which in turn leads to poor forecasts.

For any market researcher interested in using the E/KS model, a key question is how
many weeks of data are needed for model calibration. As would be expected, forecast-
ing accuracy increases with the number of weeks of data available for model calibration.
Furthermore, for a given number of calibration weeks, more accurate forecasts will be gen-
erated for products with a fast purchase cycle, compared to those with a slow purchase
cycle. Our analysis suggests that sufficiently accurate forecasts — from a manager’s per-
spective — can be generated using 24 weeks of data, regardless of the product’s purchase
cycle.

Therefore, despite the problem with parameter interpretation, the E/KS model ap-
pears to be a very good model for forecasting the repeat sales for a new FMCG product,
provided the analyst is willing to use a model which provides an ‘engineering’ solution
to the forecasting problem, as opposed to one that provides insight into the underlying
buying behavior in additional to providing accurate forecasts.

A key issue to be addressed in future research concerns the incorporation of marketing
mix covariate effects in the basic model, and an examination of the associated impact on
forecasting performance and amount of data needed for model calibration.
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