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Abstract

Although new product forecasting is one of the most critical activities for virtually all firms, it
tends to be a source of great frustration and indecision for most of them. To address this need,
Information Resources, Inc., set out to create a new forecasting system with particular emphasis
on new products in consumer packaged goods markets. We document the resulting modeling
system, known commercially as IntroCast®, and describe key issues involved in its implementa-
tion and managerial interpretations. The model features a “depth-of-repeat” structure, which
breaks the new product sales into three underlying components (trial, first repeat, and additional
repeat), each of which is modeled independently (including distinct influences for marketing mix
effects). We demonstrate the performance of these components — separately and together — for
a 52-week forecasting horizon and then validate the model on a number of actual new product
tests. The model’s excellent performance makes it possible to shorten the timeframe required
for model calibration from a typical six-month interval down to a twelve-week period, a very
significant improvement for today’s highly competitive new product marketplace.



1 Background

Given the cost and risk of launching a new product in the consumer packaged goods (CPG)
industry, firms often undertake some form of test market in order to gain a more accurate read
on the new product’s performance before final decisions about the product launch are made.
Historically, this has involved selling the product into retail distribution in one or two markets,
observing the product’s sales performance for a period ranging from one to two years, and then
deciding whether (and how) to further expand distribution coverage in other markets. However,
such traditional (“sell-in”) test markets have a number of downsides. They are expensive and
the costs increase with the duration of the test, as do the opportunity costs of not “going
national” earlier. Furthermore, long testing periods give competitors more time to evaluate the
performance of the new product and develop effective reactions and preemptive strategies.

Starting with the early work of Fourt and Woodlock (1960), management scientists and
marketing researchers began developing a number of models designed to generate forecasts of
the new product’s longer-term sales performance using panel data collected over the first few
months of the test market. Much progress was made in this area for nearly 15 years, but by
the late 1970s, academic researchers had turned their attention away to other types of modeling
tasks, leaving this area of research largely untouched for the next two decades. At the time
these models were being developed, consumer panel data were collected using self-completed
paper diaries. Information about merchandising activities, such as coupons and in-store display
promotions, were sparse and difficult to measure cleanly. Consequently most models developed
in this era did not include the effects of marketing decision variables.

In 1980, the field of test marketing was revolutionized by the introduction of the BehaviorScan®
electronic test market service by Information Resources, Inc. (IRI). This service provided market-
ing managers with unprecedented control over the test market environment. As one of the first
applications of UPC scanner data beyond inventory management, the system made it possible
to capture point-of-sale purchasing data along with timely, complete, and accurate information
about the factors that influence purchasing decisions at the individual consumer level. For the
first time, managers could cleanly measure—and control — factors such as retail distribution

and merchandising activities, television advertising exposure, and other types of promotions



directed toward consumers. Two key applications of this service are the testing of new products
and the testing of advertising; see Lodish et al. (1995) for details of the latter application.

At the time of writing, the BehaviorScan® service is based around five geographically dis-
perse and demographically representative cities. Within each city a panel of several thousand
households carry cards that are scanned when checking out from a variety of retail stores, rep-
resenting over 90% of the grocery dollar volume in those cities.

As marketing managers plan for the introduction of a new product, the BehaviorScan®
system gives them tight control over many relevant marketing and environmental variables. IRI
maintains its own warehouse and distribution system in these cities, and IRI personnel are in
the stores several times each week to assure that the planned distribution, shelf location, and
point-of-sale promotional activities are executed as planned. Similar oversight exists for direct-
to-consumer promotions, such as samples and newspaper coupons. Finally, addressable cable
television technology allows for the targeting of specific advertisements to subsets of the panel
households. This high degree of control over the various dimensions of the market environment
allows managers to replicate expected conditions in a hypothetical national launch. (Further
details of the BehaviorScan® system can be found in Curry (1993) and Larson (1992).)

IRI analysts involved in the generation of new product sales forecasts using data collected
via a BehaviorScan® test have employed techniques such as those outlined in Fourt and Wood-
lock (1960) as well as extensions of that work, e.g., Eskin (1973). But these techniques were
designed for use with simple aggregated panel data, not the type of rich individual-level data
that is now available. Analysts attempted to extend these original approaches to incorporate
the effects of marketing mix variables, but generally did so in a rather ad hoc manner. For
instance, certain model parameters from the basic Fourt-Woodlock framework were replaced by
polynomial functions of marketing effects. In some cases, these extensions violated “logical con-
sistency” constraints. As but one example, the penetration build, i.e., the cumulative trial rate,
for a new product should be a monotonically increasing function bounded between 0 and 100%,
but some of the “fixes” to accommodate marketing effects would lead to curves that could, in
theory, decrease and/or go outside these bounds.

In the mid-1990s, IRI set out to create a state-of-the-art decision support system to help

manage the introduction of a new CPG product. This system, known as IntroCast®, was



designed to be used not only in conjunction with BehaviorScan®-based tests but also with tests
conducted in standard panel markets for which there is no controlled distribution. Additionally,
the system would be used in the management of regional roll-outs. The managers responsible
for this initiative recognized the limitations of IRI’s existing forecasting models and decided that
the first phase of this decision support development effort should focus on the underlying model
of new product sales. This paper reports on the initial results of this development effort, namely
a model for forecasting the sales of a new product based on early results from a controlled test

market.

2 General Model Structure

Consider the product “Kiwi Bubbles” (a masked name for a real drink product) that underwent a
year-long test in two of IRI’s BehaviorScan® test markets prior to making the final “go national”
decision. Figure 1 plots the purchasing of this product by the 2799 panelists in these two markets

for the first 24 weeks of the test.
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Figure 1: Initial Test Market Sales

Given this information, the brand manager may ask two related questions: (i) “How well is
Kiwi Bubbles performing to date?” and (ii) “What sales level can we expect by the end of the
year?” Answers to these questions, especially the latter, are key inputs to the final “go-national”

decision.



A given overall aggregate sales history could be the realization of very different purchasing
scenarios. For example, a low sales level for a new product could be the result of: (i) many
consumers making a trial purchase but few of them making a repeat purchase (because the
product does not meet their expectations), or (ii) a low trial rate but a high level of repeat
purchasing amongst the triers (because the product meets a real need among a relatively small
set of buyers). Without a proper trial-repeat sales decomposition, it is impossible to determine
which of these scenarios (or the infinite other possible combinations of trial-repeat patterns that
could lead to the same aggregate sales curve) best describes the early sales data. Therefore
the decomposition of aggregate sales into separate trial and repeat components is central to
answering either of these questions. Further insights can be gained by decomposing repeat sales
into its so-called “depth-of-repeat” components, i.e., the number of people who have made at
least one repeat purchase, the number of people who have made at least two repeat purchases,
and so on.

For the purposes of reporting new product sales performance, many research firms (and their

clients) have long used the following decomposition of new product sales:

cumulative sales volume = cumulative # individuals who have made a trial purchase
x average volume per trial purchase
+ cumulative # individuals who have made a first repeat purchase
X average volume per first repeat purchase
+ cumulative # additional repeat purchases

x average volume per additional repeat purchase

(See, for example, Clarke (1984) and Rangan and Bell (1994).) For presentational simplicity,
let us assume that only one unit is purchased on each purchase occasion. We can write the

decomposition of sales as:

S(t) = T(t) + FR(t) + AR(t) (1)

where S(t) is the cumulative sales volume up to time ¢, T'(¢) is the cumulative number of triers

up to time ¢, FR(t) is the cumulative number of people who have made at least one repeat (first



repeat) purchase by time ¢, and AR(t) is the total number of additional repeat purchases (i.e.,
second repeat or higher) up to time ¢.

Given the entrenched nature of this decomposition among managers in the CPG industry,
our approach to the development of a new product sales forecasting model was to create (inde-
pendent) models for each of the three components of total sales: T'(t), FR(t), AR(t). It was felt
that such an approach would facilitate the acceptance of the new model within IRI, and aid its

communication to clients.

3 Modeling Trial

We model the cumulative number of triers by time ¢ by developing an expression for P(trial by t),
the probability that a randomly-chosen individual has made a trial purchase by time ¢. For a

market comprising N individuals (i.e., the size of the panel), we have

T(t) = N - P(trial by t) (2)

We develop our model for P(trial by ¢) using a stochastic modeling approach in which we make
a set of assumptions about consumer behavior, translate these into probabilistic terms and then

derive the complete model. In particular, we make the following four assumptions:

e Only a fraction pg of the N individuals in the market will ever make a trial purchase.
This accounts for the fact that some individuals will simply not be in the market for the
product. For example, one would typically expect that a new brand of cat food will not

be purchased by households that do not have a cat.

e For each individual who will eventually make a trial purchase, the time to the trial purchase
is treated as a random variable and can be characterized by an exponential distribution

with (latent) rate parameter A\p.

e Beyond the underlying exponential process, marketing activities (e.g., newspaper features,
in-store displays, coupons, price changes) will increase or decrease a household’s likelihood

of making a trial purchase in any given week. Formally, the effects of these marketing ac-



tivities on the distribution of time to trial are incorporated using the proportional hazards

framework (e.g., Helsen and Schmittlein 1993; Jain and Vilcassim 1991).)

e Holding the effects of marketing activities constant, households differ in their underlying
probability of making a trial purchase by a given point in time after the launch. For
example, some households are heavy category buyers and are therefore more likely to
make a trial purchase earlier than light category buyers. Formally, Ay is assumed to be
distributed across the population of eventual triers according to a gamma distribution with

shape parameter rp and scale parameter arg.
Expressing these four assumptions in mathematical terms results in the following expression
for P(trial by t) (Fader, Hardie, and Zeithammer 2003):

P(trial by t) = po [1 - (M)T] L t=1,2,... (3)

where A(t) = 2!_ exp (B7x(i)), z(i) denotes the vector of marketing activity variables in week
i and B denotes the impact of these variables on the trial purchase probabilities.

To illustrate this model of trial purchasing, we estimate its parameters using data on the
trial purchasing of the 2799 panelists over the first 24 weeks of purchasing data for the Kiwi
Bubbles product. We have three different marketing activity variables: one that captures the
extent of in-store promotional activity each week, one that captures exposure to manufacturer
coupons, and one for the exposure to television advertising. The latter two measures are created
as exponentially-smoothed versions of the raw exposure data in order to capture the effects of
customer forgetting and wear-out over time.

The six parameter estimates for the trial model are substituted into (3) which, coupled with
(2), is then used to forecast trial purchasing to the end of the new product’s first year in the
test market. (This forecast is conditioned on the actual values of the three marketing activity
variables as observed in the two markets over weeks 25-52.) This is plotted in Figure 2 along
with the actual level of trial purchasing that occurred over this period.

The performance of the model is quite impressive, with effectively no degradation in its

overall tracking capability even as we move far away from the 24-week calibration period. It
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Figure 2: Illustrative Results for Trial Model

is clear that the inclusion of the covariate effects helps capture some of the irregular curvature
that exists within the calibration period (e.g., around week 12), yet there are some irregularities
in the forecast period that the model misses. It appears to be rather serendipitous that these
peaks and valleys cancel each other out to a large extent.

While the degree of accuracy seen here (overforecasting actual 52-week sales by 0.2%) is
unusually high, we have seen, in general, that the trial model is consistently strong (generally
within 5-10% over a similar timeframe). Detailed evidence about the performance of the trial

model can be found in Fader, Hardie, and Zeithammer (2003).

4 Modeling First Repeat

The next step in model development is to derive an expression for FR(t), the cumulative number
of people who have made at least one repeat purchase of the new product by time ¢. In developing
this model, as well as our model for additional repeat purchases in the next subsection, we need
to make some assumptions about the nature of the data at our disposal. Time is measured
on the positive real line, where the origin corresponds to the launch of the new product. By
convention, integer values correspond to the end of each week; for example, ¢ = 2 corresponds
to the end of the second week since the launch of the new product. With consumer panels such
as those associated with the BehaviorScan® service, the time of purchase is recorded on the real

time line (e.g., on a daily or even hourly basis). However, for the purposes of reporting and



model development, time is processed in an integer manner (i.e., the data are interval-censored).
Eskin (1973, footnote 2, p. 118) notes that when data are processed at a weekly level, a first
repeat purchase cannot be made in the same week as its corresponding trial purchase. When
such an event does occur in the data, the first repeat purchase must be coded as occuring in
the following week. Following this convention, the earliest a jth repeat purchase can occur is in
week j+1.

With this data constraint in mind, let us consider how an individual could have made a first

repeat purchase of the new product by the end of week 4:

e she could have made a trial purchase in week 1 and made a second purchase (i.e., her first

repeat purchase) somewhere in the intervening three weeks,

e she could have made a trial purchase in week 2 and a second purchase sometime in the

following two weeks, or

e she could have made a trial purchase in week 3 and her first repeat purchase sometime in

the following week.

Letting P(first repeat by ¢ |trial at tg) denote the probability that a randomly-chosen indi-
vidual who made a trial purchase at ¢y has made a first repeat purchase by time ¢ (> ty), the

above logic implies we can express cumulative first repeat purchases at time t as

t—1
FR(t) = Z P(first repeat by t | trial at to)[T'(to) — T'(to — 1)] (4)

to=1
where T'(to) —T'(to— 1) is the number of incremental triers in week to. (By definition, 7°(0) = 0.)
We derive an expression for P(first repeat by ¢ |trial at ¢p) using exactly the same logic as
for the trial purchasing probability P(trial by t). In other words, we apply a set of assumptions
equivalent to those discussed in the previous subsection. Specifically, we assume that: (1)
only a fraction p; of the triers will ever make a repeat purchase, (2) the time from trial to
first repeat purchase (for those triers who will eventually make a first repeat purchase) can be
characterized as an exponentially distributed random variable, (3) marketing activities influence

first-repeat times according to the proportional hazards framework, and (4) each household’s



exponential rate parameter varies in accordance with a gamma distribution. Taken together,

these assumptions give us

QFR
afFR + B(t)

TFR
P(first repeat by t|trial at tp) = p1 [1 — < Bl )> } ,t=to+1,to+2,... ()
— B(to

where B(t) = >.'_ exp (BFrz(i)), @ (i) denotes the vector of marketing activity variables in
week ¢ and Brp denotes the impact of these variables on first repeat purchase probabilities.
Note that the structure of this expression mirrors that of P(trial by ¢) with the exception that
we have B(t) — B(tp), instead of B(t) alone. B(t) captures the effects of the marketing activities
since the launch of the new product; subtracting B(ty) removes the effects of the marketing
activities up to the time of the trial purchase, which should have no direct bearing on purchases
beyond trial.

We illustrate this model of first repeat purchasing using the Kiwi Bubbles dataset once
again, employing the same three covariates (in-store promotions, coupons, television advertising
exposure) as before, but with a different set of coefficients to capture the unique impact that
these effects might have on converting triers into first repeaters. The estimated parameters are
substituted into (5) which, coupled with (4), is then used to forecast first repeat purchasing
to the end of the new product’s first year in the test market. (Note that (4) conditions on
trial purchasing; forecasts generated using the expression are based on forecast trial sales, as
generated using (3) and (2).) This forecast is plotted in Figure 3 along with the actual level of
first repeat purchasing that occurred over this period.

In sharp contrast to the results of the trial model, the forecast for first repeat is not especially
accurate. While the model tracks the actual data quite well through the calibration period, its
projection grows too rapidly throughout the forecast period. The 52-week forecast is 17.2%

above the actual year-end level of first-repeat sales.
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Figure 3: Illustrative Results for First Repeat Model

5 Modeling Additional Repeat

Central to our model for AR(t), the total number of additional repeat purchases by time ¢ is

the so-called depth-of-repeat decomposition
AR(t) =) Rj(1) (6)
Jj>2

where R;(t) is the cumulative number of individuals who have made at least j repeat purchases
by time t. But how do we characterize R;(t),j = 2,3,...7
In the spirit of our first repeat model, let us consider how an individual could have made a

second repeat purchase by the end of week 5:

e she could have made her first repeat purchase in week 2 (which implies her trial purchase
occurred in week 1) and made a third purchase of the new product (i.e., her second repeat

purchase) somewhere in the intervening three weeks,

e she could have made her first repeat purchase in week 3 and a second repeat purchase

sometime in the following two weeks, or

e she could have made her first repeat purchase in week 4 and her second repeat purchase

sometime in the following week.
Letting P(second repeat by t|first repeat at ¢1) denote the probability that a randomly-

10



chosen individual who made their first repeat purchase at time ¢; has made a second repeat
purchase by time ¢ (> t1), the above logic implies we can express the cumulative number of

individuals who have made at least their second repeat purchase by time ¢ as

t—1
Rs(t) = Z P(second repeat by t |first repeat at ¢1)[FR(t1) — FR(t1 — 1)]
t1=2
where FR(t1) — FR(t; — 1) is the number of individuals who made their first repeat purchase in
week ¢1. (By definition, FR(1) = 0.)

More generally, we have

t—1
R;(t) = Z {P(jth repeat by t|(j — 1)th repeat at t;_1)
t

j—1:j

X [ijl(tjfl) — ijl(tjfl — 1)] }, ] = 2, 3, e (7)

where P(jth repeat by t|(j — 1)th repeat at t;_1) is the probability that a randomly-chosen
individual who made their (j —1)th repeat purchase at time ¢;_; has made a jth repeat purchase
by time ¢ (> tj_1) and Rj_1(tj—1) — Rj_1(tj—1 — 1) is the number of individuals who made
their (j — 1)th repeat purchase in week ¢;_;. (By definition, R;(t) = 0 for ¢ < j.) Clearly,
Ry (t) = FR(t).

In order to go from this sales decomposition to a workable model, we need to develop an
expression for P(jth repeat by t|(j — 1)th repeat at t;_;). The approach taken closely resem-
bles that used for trial and first repeat. The problem we face, however, is the sparsity of
data as we move to higher levels of data—in most cases we will have little data to calibrate
a model for, say, P(6th repeat by t|5th repeat at t5), let alone a higher-order quantity such
as P(12th repeat by ¢ |11th repeat at t11). The challenge here is that we need to project this
depth-of-repeat process to levels of repeat purchasing that we do not observe in our calibration
dataset.

There are several different ways we can extrapolate the model parameters to be able to
generate a forecast of AR(t). The approach taken in our work draws heavily on Eskin (1973);
also see Fader and Hardie (1999) and Kalwani and Silk (1980).

11



Plotting a number of P(jth repeat by ¢|(j — 1)th repeat at t;_;) curves using actual repeat
buying data, Eskin observed that the structure of these empirical repeat purchase curves roughly
followed the stylized curves given in Figure 4. In particular, he noted that they had three

characteristics:

i. The curve for each depth-of-repeat class (j) exhibits an exponential growth pattern leveling

off to an asymptote — as is typically associated with a cumulative trial curve.
ii. Across depth-of-repeat classes, the curves are approximately parallel.

iii. The asymptote (i.e., ultimate conversion proportion) increases, at a decreasing rate, as j
increases; this means, for example, that the proportion of consumers who have made their

jth repeat purchase within 52 weeks of their (j — 1)th repeat purchase increases with j.
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Figure 4: Depth-of-Repeat Curves

We proceed by assuming that all the dynamics across depth-of-repeat can be captured
through a structure placed upon pj, i.e., the fraction of panelists who have made a (j — 1)th
repeat purchase and will eventually make a jth repeat purchase (for j > 2). We assume that
the other parts of the model exhibit no dynamics across depth-of-repeat classes, i.e., the same
heterogeneity distribution is assumed to hold across all depth-of-repeat classes (for 7 > 2) and
the effects of marketing activities on the time to the next purchase are assumed to be invariant

over this range as well.

As a consequence of (iii), Eskin proposed an expression for the evolution of the ultimate

12



conversion proportions equivalent to
—04 .
Pj =DPeo(l—€77), j=2 (8)

Initial analyses reported in Eskin (1973) indicate that p.o is less than 1. However, subsequent
experience reported in Eskin and Malec (1976) indicates that ps & 1, which is consistent with
the authors’ experience.

Making the same assumptions as for trial and first repeat regarding exponential interpurchase
times, the immediate effects of marketing activities, and cross-sectional heterogeneity, we have
the following expression for the probability that a randomly chosen panelist who made her

(j — 1)th repeat purchase at ¢;_; has made a jth repeat purchase by time ¢ (> t;_1):

P(jth repeat by t|(j — 1)th repeat at t;_1)

aAR TAR
= . 1_ y t:t_ 1,t_ 27... 9
p][ (aAR+C(t)—C(tj—1)) ] o1 E St ®)

where C(t) = Y'_ exp (B4zx (7)), = (i) denotes the vector of marketing activity variables in
week ¢ and 3 4 p denotes the impact of these variables on additional repeat purchase probabilities.

Because the AR model involves multiple levels of repeat purchasing, the process of generating
a forecast is a bit more complicated than for trial and first repeat. Substituting the parameter
estimates into (8) and (9), we compute P(jth repeat by ¢|(j — 1)th repeat at t;_;) for j =
2,3,.... (For a one-year forecast horizon, we stop this process at j = 51.) We then compute
the R; in a forward recursive manner using (7): a forecast of second repeat purchasing is
generated conditional on the first repeat sales forecast (not actual), then a forecast of third
repeat purchasing is generated conditional on this second repeat forecast, and so on. These are
substituted into (6) to give us an overall forecast of additional repeat sales. The corresponding
forecast for the Kiwi Bubbles dataset is plotted in Figure 5, along with the actual level of
additional repeat purchasing that occurred over this period.

In sharp contrast to Figures 2 and 3, the fitted values for the additional repeat model do not
track the actual values very well through the calibration period. This reflects the fact that we

are not estimating parameters to fit a single curve, but instead are trying to capture a family

13



15

10 1

Actual

Cum. Additional Repeats per 100 HH

— — — Predicted

Week

Figure 5: Illustrative Results for AR Model

of curves using a highly parsimonious structure imposed on the AR model parameters. The
good news is that there is no degradation whatsoever as the model projection moves away from
the 24-week calibration period. The fact that the model over-predicts the actual data by 12%
at week 52 largely reflects the fact that these projections are conditioned on the substantial
over-forecast seen earlier for the first repeat model. In other words, if we were to layer these
AR model results on top of actual (not predicted) first repeat sales, the year-end forecast index
would be 112/117 = 96.

The ultimate goal of this forecasting procedure is to pull together these three separate
forecasts (as noted in (1)) to provide us with an overall sales forecast for the new product.
This is illustrated in Figure 6, along with the corresponding actual sales numbers.

This combined graph offers a different — but much more meaningful — perspective on each
of the three model components. The over-forecast for first repeat has a relatively small impact
on the overall sales decomposition, since FR sales represent a relatively small piece of total sales
for Kiwi Bubbles. The same holds for the poor tracking we witnessed for the additional repeat
model within the calibration period. At the same time, we begin to see the critical importance
of an accurate AR projection. It is evident that virtually all of the sales growth in the forecast
period stems from additional repeat, and the extrapolative process at the heart of the AR model

seems to perform quite well.

14
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Figure 6: Creating an Overall Sales Forecast
6 Model Validation

The key question regarding any new product sales forecasting model is: can it accurately predict
sales volume? Ultimately we are interested in how well the forecasts of national sales match up
to the realized sales when the product is finally launched. The challenges associated with this
are legion (Urban and Katz 1983). One source of error concerns the projection of the test market
results to the national level, controlling for differences between the test markets and the wider
market (Berdy 1965; Gold 1964). But this assumes that the within-test-market forecasts are
accurate. In this model validation exercise, we examine the accuracy of the within-test-market
sales forecasts generated using the model developed above. That is, the model is calibrated on
purchasing data for the first 24 weeks of the test market and then a forecast of total sales to the
end of the new product’s first year in the test market is generated. (As with the above example,
this forecast is conditioned on the actual values of the marketing activity variables as observed
in the test market over weeks 25-52.) We then compare this forecast to the actual sales observed
in the test market.

The challenge faced when undertaking this validation exercise was to find past BehaviorScan®
tests that had lasted a whole year. Most tests had a duration of six months; as soon as a sales
forecast had been generated using the first 24 weeks of data, the client would typically terminate
the test market and make a “go national” decision on the basis of this forecast. As such, most

of the data collected using past tests could not be used.
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We were able to identify twelve new products (labelled A-L) that underwent year-long
BehaviorScan® tests; product J corresponds to the Kiwi Bubbles example above. In Table 1,
we report, for each product, the index of year-end forecast accuracy (WK52 Index), computed

as 100 x expected week 52 cumulative total sales / actual week 52 cumulative total sales.

Product WK52 Index Product WK52 Index

A 98 G 90
B 81 H 97
C 109 I 99
D 106 J 108
E 111 K 96
F 82 L 101

Table 1: Validation Results

Across these twelve products, the average WK52 index is 98, and there is no indication that
these overall forecasts (or their underlying components) show any upward or downward biases.
One might argue that this overall mean is a bit misleading since it allows positive and negative
forecast errors to cancel out, but even the average absolute percent error of 7.7% is well within
a tolerable range.

A much tougher validation is to see how well the model performs when we use a shorter
calibration period for parameter estimation. Not only does this allow us to scrutinize model
performance more carefully, but it also reflects the reality that many new product managers are
facing today. A recent article in Advertising Age (2002) discussed a pressing need for managers
to obtain accurate forecasts much more quickly than in the past. As one researcher pointed out,
“We want to have preventive tools early on. After the fact it’s sort of like accident reports.”

With these motivations in mind, we re-estimated the model using only 12 weeks of data for
a subset of the twelve tests shown above. The overall mean index of 102 is still impressive,
although the average absolute percent error expands to 13.5%. This reflects greater variability
in these indexed forecasts—they range from a low of 71 to a high of 122. (In contrast none
of the 24-week forecasts was off by more than 20%.) It should come as no surprise that the
two components of the model that capture repeat sales are much more seriously affected by the
shorter calibration period than is the trial component.

This twelve-week analysis points out the need to accumulate these forecasts (and the pa-
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rameter estimates) across multiple products in order to properly benchmark the performance
of future products (and their associated forecasts). As a firm develops such a database, it can
better understand which new products are strokes of luck (good or bad) and which ones are
simply following the established norms.

Beyond these aggregate forecasts, the model offers useful diagnostics about the relative sizes
and growth rates of the underlying components (as per Figure 6). In addition, the parameter
estimates can provide some insight about how the impact of the covariate effects (i.e., marketing
activities) varies as we move from trial to first repeat to additional repeat. As a firm begins
to accumulate these forecasts and parameter estimates across multiple products, it becomes
possible to use this database to properly benchmark the performance and responsiveness of a

new product that has just been launched.

7 Discussion and Conclusions

It is sadly ironic that the state of the art in forecasting CPG new product sales has not kept
pace with advances in data collection technology and computational power. What makes this
irony even more pointed is the fact that the basic frameworks conveyed in older methods (such
as those put forth by Fourt and Woodlock (1960) and Eskin 1973)) appear to be just as valid
today as when they were first developed decades ago. Unfortunately, as practitioners grapple
with incorporating new types and sources of data (e.g., marketing mix variables) they often
end up dismantling forecasting systems that embodied all this collected wisdom. The authors’
experience with one research firm (Information Resources, Inc.) is fairly typical in this regard;
fortunately this firm was able to recover from its past missteps and has now regained a lead-
ership position in its commercial forecasting capabilities. In contrast, most firms do not seem
to be enjoying similarly fruitful perspectives these days, as evidenced by the poor forecasting
performances discussed in a recent industry survey by Kahn (2002).

One of the primary strengths of the modeling approach we presented here is its broad appli-
cability to many types of new products and services. Not only is it well-suited for the wide array
of products that fall under the CPG umbrella, but it should be equally useful for virtually any

other product/service that emphasizes repeat purchases (and has a sufficiently short purchase
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cycle to enable the observation and modeling of several levels of repeat behavior). Examples
outside of the CPG arena include service businesses such as banking and telecommunications, as
well as e-commerce buying behavior. In a variety of projects involving repeat-buying behavior
from these and other industries, we have seen consistently strong evidence that supports the
various components of our modeling approach.

One novel non-CPG example was presented in Fader and Dismukes (2002). A slightly mod-
ified version of this model was used to capture and project the depth-of-repeat patterns for a
leading online travel company. The objective was to understand the short- and long-run impact
of the 9/11 disaster on trial and repeat bookings for the company. The model showed that
simple summaries using the observed data alone (e.g., looking at differences in the pre- and
post-9/11 bookings) greatly understate the actual impact of the event.

Beyond this type of application/extension of the basic model, there are still some unresolved
modeling issues, even in the CPG world, that we have not discussed. One such issue is the
notion of distribution build. One unique characteristic of the BehaviorScan® electronic test
market service is the fact that it ensures complete retail distribution for the product of interest.
Representatives of IRI ensure that the product is always available in all retail outlets that they
wish to track. In contrast, most new products need to fight for shelf space, and it is often
a losing battle. CPG manufacturers pay particular attention to the product’s ability to hang
on to (and possibly expand) its shelf presence, but they are frequently forced to deal with the
consequences of retailer delisting, i.e., removing the product from distribution.

It is easy to bring in retail distribution coverage as another covariate in our proportional
hazards model, but distribution serves as more than just an information source or sales incentive
like coupons or television ads. Instead, it should be treated as a bottleneck that may prevent the
widespread purchasing of a product regardless of how well-promoted it may be. This requires a
separate model component, one that is not hard to implement, but is outside the scope of the
kinds of datasets that we have used here.

As this modeling framework is extended to incorporate other managerial control variables
(and as it is applied to a wider array of products and services), there may be the need for some
modifications to the basic equations shown here. But this paradigm should be robust enough to

handle these refinements with ease, and it should even perform quite well without them. This
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contrasts with the ad hoc regression approaches, described at the start of the paper, that made it
difficult to adapt older forecasting models to the changes in data availability that occurred in the
1980s. By focusing on the underlying behavioral process (instead of emphasizing atheoretical
“curve-fitting” procedures), we have captured the fundamental trial and repeat process in a
general, flexible manner. The resulting improvements in forecasting performance and managerial
diagnostics are important rewards that will benefit managers who take the time to build the

“right” model in the first place.
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