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Problem 1:
Predicting New Product Trial

(Modeling Timing Data)
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Background

Ace Snackfoods, Inc. has developed a new snack product

called Krunchy Bits. Before deciding whether or not to “go

national” with the new product, the marketing manager for

Krunchy Bits has decided to commission a year-long test market

using IRI’s BehaviorScan service, with a view to getting a clearer

picture of the product’s potential.

The product has now been under test for 24 weeks. On

hand is a dataset documenting the number of households that

have made a trial purchase by the end of each week. (The total

size of the panel is 1499 households.)

The marketing manager for Krunchy Bits would like a

forecast of the product’s year-end performance in the test

market. First, she wants a forecast of the percentage of

households that will have made a trial purchase by week 52.
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Krunchy Bits Cumulative Trial

Week # Households Week # Households

1 8 13 68

2 14 14 72

3 16 15 75

4 32 16 81

5 40 17 90

6 47 18 94

7 50 19 96

8 52 20 96

9 57 21 96

10 60 22 97

11 65 23 97

12 67 24 101
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Krunchy Bits Cumulative Trial
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Approaches to Forecasting Trial

• French curve

• “Curve fitting”—specify a flexible functional form,
fit it to the data, and project into the future.

• Probability model
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Developing a Model of Trial Purchasing

• Start at the individual-level then aggregate.

Q: What is the individual-level behavior of
interest?

A: Time (since new product launch) of trial
purchase.

• We don’t know exactly what is driving the behavior
⇒ treat it as a random variable.
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The Individual-Level Model

• Let T denote the random variable of interest, and t
denote a particular realization.

• Assume time-to-trial is distributed exponentially.

• The probability that an individual has tried by
time t is given by:

F(t) = P(T ≤ t) = 1− e−λt

• λ represents the individual’s trial rate.
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The Market-Level Model

Assume two segments of consumers:

Segment Description Size λ
1 ever triers p θ
2 never triers 1− p 0

P(T ≤ t) = P(T ≤ t|ever trier)× P(ever trier)+
P(T ≤ t|never trier)× P(never trier)

= pF(t|λ = θ)+ (1− p)F(t|λ = 0)

= p(1− e−θt)
→ the “exponential w/ never triers” model
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Estimating Model Parameters

• Let us assume that the Krunchy Bits data are the
outcome of a process characterized by the
“exponential w/ never triers” model.

• Which set of model parameters are more likely to
have “generated” the data?

p θ P(data) ln
(
P(data)

)

0.5 0.10 1.8 × 10−539 −1240.5
0.5 0.05 3.9 × 10−443 −1018.7
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Problem 1 -- Model 1
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A B C D E F G H I
Product: Krunchy Bits p 0.5
Panelists: 1499 \theta 0.1

LL = =SUM(G6:G30)
Cum_Trl

Week # HHs Incr_Trl P(T <= t) P(try week t) E[T(t)]
1 8 =B6 =G$1*(1-EXP(-G$2*A6)) =E6 =C6*LN(F6) =B$2*E6
2 14 =B7-B6 =G$1*(1-EXP(-G$2*A7)) =E7-E6 =C7*LN(F7) =B$2*E7
3 16 =B8-B7 =G$1*(1-EXP(-G$2*A8)) =E8-E7 =C8*LN(F8) =B$2*E8
4 32 =B9-B8 =G$1*(1-EXP(-G$2*A9)) =E9-E8 =C9*LN(F9) =B$2*E9
5 40 =B10-B9 =G$1*(1-EXP(-G$2*A10)) =E10-E9 =C10*LN(F10) =B$2*E10
6 47 =B11-B10 =G$1*(1-EXP(-G$2*A11)) =E11-E10 =C11*LN(F11) =B$2*E11
7 50 =B12-B11 =G$1*(1-EXP(-G$2*A12)) =E12-E11 =C12*LN(F12) =B$2*E12
8 52 =B13-B12 =G$1*(1-EXP(-G$2*A13)) =E13-E12 =C13*LN(F13) =B$2*E13
9 57 =B14-B13 =G$1*(1-EXP(-G$2*A14)) =E14-E13 =C14*LN(F14) =B$2*E14
10 60 =B15-B14 =G$1*(1-EXP(-G$2*A15)) =E15-E14 =C15*LN(F15) =B$2*E15
11 65 =B16-B15 =G$1*(1-EXP(-G$2*A16)) =E16-E15 =C16*LN(F16) =B$2*E16
12 67 =B17-B16 =G$1*(1-EXP(-G$2*A17)) =E17-E16 =C17*LN(F17) =B$2*E17
13 68 =B18-B17 =G$1*(1-EXP(-G$2*A18)) =E18-E17 =C18*LN(F18) =B$2*E18
14 72 =B19-B18 =G$1*(1-EXP(-G$2*A19)) =E19-E18 =C19*LN(F19) =B$2*E19
15 75 =B20-B19 =G$1*(1-EXP(-G$2*A20)) =E20-E19 =C20*LN(F20) =B$2*E20
16 81 =B21-B20 =G$1*(1-EXP(-G$2*A21)) =E21-E20 =C21*LN(F21) =B$2*E21
17 90 =B22-B21 =G$1*(1-EXP(-G$2*A22)) =E22-E21 =C22*LN(F22) =B$2*E22
18 94 =B23-B22 =G$1*(1-EXP(-G$2*A23)) =E23-E22 =C23*LN(F23) =B$2*E23
19 96 =B24-B23 =G$1*(1-EXP(-G$2*A24)) =E24-E23 =C24*LN(F24) =B$2*E24
20 96 =B25-B24 =G$1*(1-EXP(-G$2*A25)) =E25-E24 =C25*LN(F25) =B$2*E25
21 96 =B26-B25 =G$1*(1-EXP(-G$2*A26)) =E26-E25 =C26*LN(F26) =B$2*E26
22 97 =B27-B26 =G$1*(1-EXP(-G$2*A27)) =E27-E26 =C27*LN(F27) =B$2*E27
23 97 =B28-B27 =G$1*(1-EXP(-G$2*A28)) =E28-E27 =C28*LN(F28) =B$2*E28
24 101 =B29-B28 =G$1*(1-EXP(-G$2*A29)) =E29-E28 =C29*LN(F29) =B$2*E29
25 101 =G$1*(1-EXP(-G$2*A30)) =E30-E29 =(B2-B29)*LN(1-E29) =B$2*E30
26 101 =G$1*(1-EXP(-G$2*A31)) =E31-E30 =B$2*E31
27 105 =G$1*(1-EXP(-G$2*A32)) =E32-E31 =B$2*E32
28 106 =G$1*(1-EXP(-G$2*A33)) =E33-E32 =B$2*E33
29 106 =G$1*(1-EXP(-G$2*A34)) =E34-E33 =B$2*E34
30 118 =G$1*(1-EXP(-G$2*A35)) =E35-E34 =B$2*E35
31 119 =G$1*(1-EXP(-G$2*A36)) =E36-E35 =B$2*E36
32 119 =G$1*(1-EXP(-G$2*A37)) =E37-E36 =B$2*E37
33 120 =G$1*(1-EXP(-G$2*A38)) =E38-E37 =B$2*E38
34 123 =G$1*(1-EXP(-G$2*A39)) =E39-E38 =B$2*E39
35 125 =G$1*(1-EXP(-G$2*A40)) =E40-E39 =B$2*E40
36 125 =G$1*(1-EXP(-G$2*A41)) =E41-E40 =B$2*E41
37 126 =G$1*(1-EXP(-G$2*A42)) =E42-E41 =B$2*E42
38 127 =G$1*(1-EXP(-G$2*A43)) =E43-E42 =B$2*E43
39 127 =G$1*(1-EXP(-G$2*A44)) =E44-E43 =B$2*E44
40 127 =G$1*(1-EXP(-G$2*A45)) =E45-E44 =B$2*E45
41 127 =G$1*(1-EXP(-G$2*A46)) =E46-E45 =B$2*E46
42 128 =G$1*(1-EXP(-G$2*A47)) =E47-E46 =B$2*E47
43 129 =G$1*(1-EXP(-G$2*A48)) =E48-E47 =B$2*E48
44 129 =G$1*(1-EXP(-G$2*A49)) =E49-E48 =B$2*E49
45 129 =G$1*(1-EXP(-G$2*A50)) =E50-E49 =B$2*E50
46 130 =G$1*(1-EXP(-G$2*A51)) =E51-E50 =B$2*E51
47 132 =G$1*(1-EXP(-G$2*A52)) =E52-E51 =B$2*E52
48 133 =G$1*(1-EXP(-G$2*A53)) =E53-E52 =B$2*E53
49 137 =G$1*(1-EXP(-G$2*A54)) =E54-E53 =B$2*E54
50 137 =G$1*(1-EXP(-G$2*A55)) =E55-E54 =B$2*E55
51 137 =G$1*(1-EXP(-G$2*A56)) =E56-E55 =B$2*E56
52 139 =G$1*(1-EXP(-G$2*A57)) =E57-E56 =B$2*E57



Estimating Model Parameters

We estimate the model parameters using the method
of maximum likelihood.

• The likelihood function is defined as the
probability of observing all of the data points

• This probability is computed using the model and
is viewed as a function of the model parameters:

L(parameters) = p(data|parameters)
• For any given set of parameters, L(·) tells us the
probability of obtaining the actual data

• For a given dataset, the maximum likelihood
estimates of the model parameters are those
values that maximize L(·)
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Estimating Model Parameters

The log-likelihood function is defined as:

LL(p, θ|data) = 8× ln[P(0 < T ≤ 1)] +
6× ln[P(1 < T ≤ 2)] +
. . . +
4× ln[P(23 < T ≤ 24)]+

(1499− 101)× ln[P(T > 24)]

The maximum value of the log-likelihood function is
LL = −680.9, which occurs at p̂ = 0.085 and
θ̂ = 0.066.
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Problem 1 -- Model 1
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A B C D E F G H I
Product: Krunchy Bits p 0.085
Panelists: 1499 \theta 0.066

LL = -680.9
Cum_Trl

Week # HHs Incr_Trl P(T <= t) P(try week t) E[T(t)]
1 8 8 0.00543 0.00543 -41.723 8.14
2 14 6 0.01052 0.00508 -31.691 15.76
3 16 2 0.01527 0.00476 -10.696 22.89
4 32 16 0.01972 0.00445 -86.633 29.57
5 40 8 0.02389 0.00417 -43.848 35.81
6 47 7 0.02779 0.00390 -38.832 41.65
7 50 3 0.03143 0.00365 -16.841 47.12
8 52 2 0.03485 0.00341 -11.360 52.24
9 57 5 0.03804 0.00319 -28.733 57.02

10 60 3 0.04103 0.00299 -17.439 61.50
11 65 5 0.04383 0.00280 -29.397 65.70
12 67 2 0.04644 0.00262 -11.892 69.62
13 68 1 0.04889 0.00245 -6.012 73.29
14 72 4 0.05118 0.00229 -24.314 76.72
15 75 3 0.05333 0.00214 -18.435 79.94
16 81 6 0.05533 0.00201 -37.268 82.95
17 90 9 0.05721 0.00188 -56.500 85.76
18 94 4 0.05897 0.00176 -25.377 88.39
19 96 2 0.06061 0.00164 -12.821 90.86
20 96 0 0.06215 0.00154 0.000 93.16
21 96 0 0.06359 0.00144 0.000 95.32
22 97 1 0.06494 0.00135 -6.610 97.34
23 97 0 0.06620 0.00126 0.000 99.23
24 101 4 0.06738 0.00118 -26.970 101.00
25 101 0.06848 0.00110 -97.518 102.65
26 101 0.06951 0.00103 104.20
27 105 0.07048 0.00097 105.65
28 106 0.07139 0.00090 107.01
29 106 0.07223 0.00085 108.28
30 118 0.07302 0.00079 109.46
31 119 0.07377 0.00074 110.57
32 119 0.07446 0.00069 111.61
33 120 0.07511 0.00065 112.59
34 123 0.07572 0.00061 113.50
35 125 0.07628 0.00057 114.35
36 125 0.07682 0.00053 115.15
37 126 0.07731 0.00050 115.89
38 127 0.07778 0.00047 116.59
39 127 0.07821 0.00044 117.24
40 127 0.07862 0.00041 117.85
41 127 0.07900 0.00038 118.43
42 128 0.07936 0.00036 118.96
43 129 0.07969 0.00033 119.46
44 129 0.08001 0.00031 119.93
45 129 0.08030 0.00029 120.37
46 130 0.08057 0.00027 120.78
47 132 0.08083 0.00026 121.16
48 133 0.08107 0.00024 121.52
49 137 0.08129 0.00022 121.86
50 137 0.08150 0.00021 122.17
51 137 0.08170 0.00020 122.47
52 139 0.08188 0.00018 122.74



Forecasting Trial

• F(t) represents the probability that a randomly
chosen household has made a trial purchase by
time t, where t = 0 corresponds to the launch of
the new product.

• Let T(t) = cumulative # households that have
made a trial purchase by time t:

E[T(t)] = N × F̂(t)
= Np̂(1− e−θ̂t), t = 1,2, . . .

where N is the panel size.

• Use projection factors for market-level estimates.
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Cumulative Trial Forecast
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Extending the Basic Model

• The “exponential w/ never triers” model assumes
all triers have the same underlying trial rate θ—a
bit simplistic.

• Allow for multiple trier “segments” each with a
different (latent) trial rate:

F(t) =
S∑
s=1

psF(t|λs), λ1 = 0,
S∑
s=1

ps = 1

• Replace the discrete distribution with a
continuous distribution.
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Distribution of Trial Rates
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Distribution of Trial Rates

• Assume trial rates are distributed across the
population according to a gamma distribution:

g(λ) = αrλr−1e−αλ

Γ(r)

where r is the “shape” parameter and α is the
“scale” parameter.

• The gamma distribution is a flexible (unimodal)
distribution …and is mathematically convenient.
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Illustrative Gamma Density Functions
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Alternative Market-Level Model

The cumulative distribution of time-to-trial at the
market-level is given by:

P(T ≤ t) =
∫∞
0
P(T ≤ t|λ)g(λ)dλ

= 1−
(

α
α+ t

)r

We call this the “exponential-gamma” model.

19

Estimating Model Parameters

The log-likelihood function is defined as:

LL(r ,α|data) = 8× ln[P(0 < T ≤ 1)] +
6× ln[P(1 < T ≤ 2)] +
. . . +
4× ln[P(23 < T ≤ 24)]+

(1499− 101)× ln[P(T > 24)]

The maximum value of the log-likelihood function is
LL = −681.4, which occurs at r̂ = 0.050 and
α̂ = 7.973.
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Problem 1 -- Model 2
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A B C D E F G H I
Product: Krunchy Bits r 1
Panelists: 1499 \alpha 1

LL = =SUM(G6:G30)
Cum_Trl

Week # HHs Incr_Trl P(T <= t) P(try week t) E[T(t)]
1 8 =B6 =1-(G$2/(G$2+A6))^G$1 =E6 =C6*LN(F6) =B$2*E6
2 14 =B7-B6 =1-(G$2/(G$2+A7))^G$1 =E7-E6 =C7*LN(F7) =B$2*E7
3 16 =B8-B7 =1-(G$2/(G$2+A8))^G$1 =E8-E7 =C8*LN(F8) =B$2*E8
4 32 =B9-B8 =1-(G$2/(G$2+A9))^G$1 =E9-E8 =C9*LN(F9) =B$2*E9
5 40 =B10-B9 =1-(G$2/(G$2+A10))^G$1 =E10-E9 =C10*LN(F10) =B$2*E10
6 47 =B11-B10 =1-(G$2/(G$2+A11))^G$1 =E11-E10 =C11*LN(F11) =B$2*E11
7 50 =B12-B11 =1-(G$2/(G$2+A12))^G$1 =E12-E11 =C12*LN(F12) =B$2*E12
8 52 =B13-B12 =1-(G$2/(G$2+A13))^G$1 =E13-E12 =C13*LN(F13) =B$2*E13
9 57 =B14-B13 =1-(G$2/(G$2+A14))^G$1 =E14-E13 =C14*LN(F14) =B$2*E14
10 60 =B15-B14 =1-(G$2/(G$2+A15))^G$1 =E15-E14 =C15*LN(F15) =B$2*E15
11 65 =B16-B15 =1-(G$2/(G$2+A16))^G$1 =E16-E15 =C16*LN(F16) =B$2*E16
12 67 =B17-B16 =1-(G$2/(G$2+A17))^G$1 =E17-E16 =C17*LN(F17) =B$2*E17
13 68 =B18-B17 =1-(G$2/(G$2+A18))^G$1 =E18-E17 =C18*LN(F18) =B$2*E18
14 72 =B19-B18 =1-(G$2/(G$2+A19))^G$1 =E19-E18 =C19*LN(F19) =B$2*E19
15 75 =B20-B19 =1-(G$2/(G$2+A20))^G$1 =E20-E19 =C20*LN(F20) =B$2*E20
16 81 =B21-B20 =1-(G$2/(G$2+A21))^G$1 =E21-E20 =C21*LN(F21) =B$2*E21
17 90 =B22-B21 =1-(G$2/(G$2+A22))^G$1 =E22-E21 =C22*LN(F22) =B$2*E22
18 94 =B23-B22 =1-(G$2/(G$2+A23))^G$1 =E23-E22 =C23*LN(F23) =B$2*E23
19 96 =B24-B23 =1-(G$2/(G$2+A24))^G$1 =E24-E23 =C24*LN(F24) =B$2*E24
20 96 =B25-B24 =1-(G$2/(G$2+A25))^G$1 =E25-E24 =C25*LN(F25) =B$2*E25
21 96 =B26-B25 =1-(G$2/(G$2+A26))^G$1 =E26-E25 =C26*LN(F26) =B$2*E26
22 97 =B27-B26 =1-(G$2/(G$2+A27))^G$1 =E27-E26 =C27*LN(F27) =B$2*E27
23 97 =B28-B27 =1-(G$2/(G$2+A28))^G$1 =E28-E27 =C28*LN(F28) =B$2*E28
24 101 =B29-B28 =1-(G$2/(G$2+A29))^G$1 =E29-E28 =C29*LN(F29) =B$2*E29
25 101 =1-(G$2/(G$2+A30))^G$1 =E30-E29 =(B2-B29)*LN(1-E29) =B$2*E30
26 101 =1-(G$2/(G$2+A31))^G$1 =E31-E30 =B$2*E31
27 105 =1-(G$2/(G$2+A32))^G$1 =E32-E31 =B$2*E32
28 106 =1-(G$2/(G$2+A33))^G$1 =E33-E32 =B$2*E33
29 106 =1-(G$2/(G$2+A34))^G$1 =E34-E33 =B$2*E34
30 118 =1-(G$2/(G$2+A35))^G$1 =E35-E34 =B$2*E35
31 119 =1-(G$2/(G$2+A36))^G$1 =E36-E35 =B$2*E36
32 119 =1-(G$2/(G$2+A37))^G$1 =E37-E36 =B$2*E37
33 120 =1-(G$2/(G$2+A38))^G$1 =E38-E37 =B$2*E38
34 123 =1-(G$2/(G$2+A39))^G$1 =E39-E38 =B$2*E39
35 125 =1-(G$2/(G$2+A40))^G$1 =E40-E39 =B$2*E40
36 125 =1-(G$2/(G$2+A41))^G$1 =E41-E40 =B$2*E41
37 126 =1-(G$2/(G$2+A42))^G$1 =E42-E41 =B$2*E42
38 127 =1-(G$2/(G$2+A43))^G$1 =E43-E42 =B$2*E43
39 127 =1-(G$2/(G$2+A44))^G$1 =E44-E43 =B$2*E44
40 127 =1-(G$2/(G$2+A45))^G$1 =E45-E44 =B$2*E45
41 127 =1-(G$2/(G$2+A46))^G$1 =E46-E45 =B$2*E46
42 128 =1-(G$2/(G$2+A47))^G$1 =E47-E46 =B$2*E47
43 129 =1-(G$2/(G$2+A48))^G$1 =E48-E47 =B$2*E48
44 129 =1-(G$2/(G$2+A49))^G$1 =E49-E48 =B$2*E49
45 129 =1-(G$2/(G$2+A50))^G$1 =E50-E49 =B$2*E50
46 130 =1-(G$2/(G$2+A51))^G$1 =E51-E50 =B$2*E51
47 132 =1-(G$2/(G$2+A52))^G$1 =E52-E51 =B$2*E52
48 133 =1-(G$2/(G$2+A53))^G$1 =E53-E52 =B$2*E53
49 137 =1-(G$2/(G$2+A54))^G$1 =E54-E53 =B$2*E54
50 137 =1-(G$2/(G$2+A55))^G$1 =E55-E54 =B$2*E55
51 137 =1-(G$2/(G$2+A56))^G$1 =E56-E55 =B$2*E56
52 139 =1-(G$2/(G$2+A57))^G$1 =E57-E56 =B$2*E57



Problem 1 -- Model 2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

A B C D E F G H I
Product: Krunchy Bits r 0.050
Panelists: 1499 \alpha 7.973

LL = -681.4
Cum_Trl

Week # HHs Incr_Trl P(T <= t) P(try week t) E[T(t)]
1 8 8 0.00592 0.00592 -41.036 8.87
2 14 6 0.01118 0.00526 -31.482 16.76
3 16 2 0.01592 0.00474 -10.705 23.86
4 32 16 0.02022 0.00430 -87.175 30.31
5 40 8 0.02416 0.00394 -44.291 36.22
6 47 7 0.02780 0.00363 -39.322 41.67
7 50 3 0.03117 0.00337 -17.078 46.72
8 52 2 0.03431 0.00314 -11.526 51.43
9 57 5 0.03725 0.00294 -29.144 55.84

10 60 3 0.04002 0.00277 -17.672 59.98
11 65 5 0.04262 0.00261 -29.746 63.89
12 67 2 0.04509 0.00247 -12.009 67.59
13 68 1 0.04743 0.00234 -6.057 71.10
14 72 4 0.04966 0.00223 -24.429 74.44
15 75 3 0.05178 0.00212 -18.465 77.62
16 81 6 0.05381 0.00203 -37.205 80.66
17 90 9 0.05575 0.00194 -56.202 83.57
18 94 4 0.05761 0.00186 -25.147 86.36
19 96 2 0.05940 0.00179 -12.654 89.04
20 96 0 0.06112 0.00172 0.000 91.62
21 96 0 0.06277 0.00166 0.000 94.10
22 97 1 0.06437 0.00160 -6.440 96.49
23 97 0 0.06591 0.00154 0.000 98.80
24 101 4 0.06740 0.00149 -26.036 101.04
25 101 0.06884 0.00144 -97.554 103.20
26 101 0.07024 0.00140 105.29
27 105 0.07159 0.00135 107.32
28 106 0.07291 0.00131 109.29
29 106 0.07419 0.00128 111.20
30 118 0.07543 0.00124 113.06
31 119 0.07663 0.00121 114.87
32 119 0.07781 0.00117 116.63
33 120 0.07895 0.00114 118.35
34 123 0.08007 0.00112 120.02
35 125 0.08115 0.00109 121.65
36 125 0.08222 0.00106 123.24
37 126 0.08325 0.00104 124.80
38 127 0.08426 0.00101 126.31
39 127 0.08525 0.00099 127.80
40 127 0.08622 0.00097 129.25
41 127 0.08717 0.00095 130.67
42 128 0.08810 0.00093 132.05
43 129 0.08900 0.00091 133.42
44 129 0.08989 0.00089 134.75
45 129 0.09076 0.00087 136.05
46 130 0.09162 0.00085 137.33
47 132 0.09245 0.00084 138.59
48 133 0.09328 0.00082 139.82
49 137 0.09408 0.00081 141.03
50 137 0.09487 0.00079 142.22
51 137 0.09565 0.00078 143.38
52 139 0.09641 0.00076 144.53



Estimated Distribution of λ
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Cumulative Trial Forecast
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Further Model Extensions

• Combine a “never triers” term with the
“exponential-gamma” model.

• Incorporate the effects of marketing covariates.

• Model repeat sales using a “depth of repeat”
formulation, where transitions from one repeat
class to the next are modeled using an
“exponential-gamma”-type model.

23

Concepts and Tools Introduced

• Probability models

• (Single-event) timing processes

• Models of new product trial/adoption

24



Further Reading

Hardie, Bruce G. S., Peter S. Fader, and Michael Wisniewski

(1998), “An Empirical Comparison of New Product Trial

Forecasting Models,” Journal of Forecasting, 17 (June–July),

209–229.

Fader, Peter S., Bruce G. S. Hardie, and Robert Zeithammer

(2003), “Forecasting New Product Trial in a Controlled Test

Market Environment,” Journal of Forecasting, 22 (August),

391–410.

Kalbfleisch, John D. and Ross L. Prentice (2002), The

Statistical Analysis of Failure Time Data, 2nd edn., New

York: Wiley.

Lawless, J. F. (1982), Statistical Models and Methods for

Lifetime Data, New York: Wiley.
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Introduction to Probability Models

26



The Logic of Probability Models

• Many researchers attempt to describe/predict
behavior using observed variables.

• However, they still use random components in
recognition that not all factors are included in the
model.

• We treat behavior as if it were “random”
(probabilistic, stochastic).

• We propose a model of individual-level behavior
which is “summed” across individuals (taking
individual differences into account) to obtain a
model of aggregate behavior.

27

Uses of Probability Models

• Understanding market-level behavior patterns

• Prediction

– To settings (e.g., time periods) beyond the
observation period

– Conditional on past behavior

• Profiling behavioral propensities of individuals

• Benchmarks/norms

28



Building a Probability Model

(i) Determine the marketing decision problem/
information needed.

(ii) Identify the observable individual-level
behavior of interest.

• We denote this by x.

(iii) Select a probability distribution that
characterizes this individual-level behavior.

• This is denoted by f(x|θ).
• We view the parameters of this distribution
as individual-level latent traits.

29

Building a Probability Model

(iv) Specify a distribution to characterize the
distribution of the latent trait variable(s)
across the population.

• We denote this by g(θ).
• This is often called the mixing distribution.

(v) Derive the corresponding aggregate or
observed distribution for the behavior of
interest:

f(x) =
∫
f(x|θ)g(θ)dθ

30



Building a Probability Model

(vi) Estimate the parameters (of the mixing
distribution) by fitting the aggregate
distribution to the observed data.

(vii) Use the model to solve the marketing decision
problem/provide the required information.

31

Outline

• Problem 1: Predicting New Product Trial
(Modeling Timing Data)

• Problem 2: Estimating Billboard Exposures
(Modeling Count Data)

• Problem 3: Test/Roll Decisions in Segmentation-
based Direct Marketing
(Modeling “Choice” Data)

• Further applications and tools/modeling issues

32



Problem 2:
Estimating Billboard Exposures

(Modeling Count Data)

33

Background

One advertising medium at the marketer’s disposal is the

outdoor billboard. The unit of purchase for this medium is

usually a “monthly showing,” which comprises a specific set of

billboards carrying the advertiser’s message in a given market.

The effectiveness of a monthly showing is evaluated in

terms of three measures: reach, (average) frequency, and gross

rating points (GRPs). These measures are determined using data

collected from a sample of people in the market.

Respondents record their daily travel on maps. From each

respondent’s travel map, the total frequency of exposure to the

showing over the survey period is counted. An “exposure” is

deemed to occur each time the respondent travels by a

billboard in the showing, on the street or road closest to that

billboard, going towards the billboard’s face.

34



Background

The standard approach to data collection requires each

respondent to fill out daily travel maps for an entire month. The

problem with this is that it is difficult and expensive to get a

high proportion of respondents to do this accurately.

B&P Research is interested in developing a means by which

it can generate effectiveness measures for a monthly showing

from a survey in which respondents fill out travel maps for only

one week.

Data have been collected from a sample of 250 residents

who completed daily travel maps for one week. The sampling

process is such that approximately one quarter of the

respondents fill out travel maps during each of the four weeks

in the target month.

35

Effectiveness Measures

The effectiveness of a monthly showing is evaluated in
terms of three measures:

• Reach: the proportion of the population exposed
to the billboard message at least once in the
month.

• Average Frequency: the average number of
exposures (per month) among those people
reached.

• Gross Rating Points (GRPs): the mean number of
exposures per 100 people.

36



Distribution of Billboard Exposures (1 week)

# Exposures # People # Exposures # People

0 48 12 5

1 37 13 3

2 30 14 3

3 24 15 2

4 20 16 2

5 16 17 2

6 13 18 1

7 11 19 1

8 9 20 2

9 7 21 1

10 6 22 1

11 5 23 1

Average # Exposures = 4.456
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Modeling Objective

Develop a model that enables us to estimate a
billboard showing’s reach, average frequency,
and GRPs for the month using the one-week
data.

38



Modeling Issues

• Modeling the exposures to showing in a week.

• Estimating summary statistics of the exposure
distribution for a longer period of time (i.e., one
month).

39

Modeling One Week Exposures

• Let the random variable X denote the number of
exposures to the showing in a week.

• At the individual-level, X is assumed to be Poisson
distributed with (exposure) rate parameter λ:

P(X = x|λ) = λxe−λ

x!

• Exposure rates (λ) are distributed across the
population according to a gamma distribution:

g(λ) = αrλr−1e−αλ

Γ(r)

40



Modeling One Week Exposures

• The distribution of exposures at the population-
level is given by:

P(X = x) =
∫∞
0
P(X = x|λ)g(λ)dλ

= Γ(r + x)
Γ(r)x!

(
α

α+ 1
)r ( 1

α+ 1
)x

This is called the Negative Binomial Distribution,
or NBD model.

• The mean of the NBD is given by E(X) = r/α.

41

Computing NBD Probabilities

• Note that

P(X = x)
P(X = x − 1) =

r + x − 1
x(α+ 1)

• We can therefore compute NBD probabilities using
the following forward recursion formula:

P(X = x) =




(
α

α+ 1
)r

x = 0

r + x − 1
x(α+ 1) × P(X = x − 1) x ≥ 1

42



Estimating Model Parameters

The log-likelihood function is defined as:

LL(r ,α|data) = 48× ln[P(X = 0)] +
37× ln[P(X = 1)] +
30× ln[P(X = 2)] +

. . . +
1× ln[P(X = 23)]

The maximum value of the log-likelihood function is
LL = −649.7, which occurs at r̂ = 0.969 and
α̂ = 0.218.
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Estimated Distribution of λ
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r̂ = 0.969, α̂ = 0.218
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Problem 2 -- Parameter Estimation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D
r 1
\alpha 1 LL= =SUM(D5:D28)

x f_x P(X=x)
0 48 =(B2/(B2+1))^B1 =B5*LN(C5)
1 37 =C5*(B$1+A6-1)/(A6*(B$2+1)) =B6*LN(C6)
2 30 =C6*(B$1+A7-1)/(A7*(B$2+1)) =B7*LN(C7)
3 24 =C7*(B$1+A8-1)/(A8*(B$2+1)) =B8*LN(C8)
4 20 =C8*(B$1+A9-1)/(A9*(B$2+1)) =B9*LN(C9)
5 16 =C9*(B$1+A10-1)/(A10*(B$2+1)) =B10*LN(C10)
6 13 =C10*(B$1+A11-1)/(A11*(B$2+1)) =B11*LN(C11)
7 11 =C11*(B$1+A12-1)/(A12*(B$2+1)) =B12*LN(C12)
8 9 =C12*(B$1+A13-1)/(A13*(B$2+1)) =B13*LN(C13)
9 7 =C13*(B$1+A14-1)/(A14*(B$2+1)) =B14*LN(C14)
10 6 =C14*(B$1+A15-1)/(A15*(B$2+1)) =B15*LN(C15)
11 5 =C15*(B$1+A16-1)/(A16*(B$2+1)) =B16*LN(C16)
12 5 =C16*(B$1+A17-1)/(A17*(B$2+1)) =B17*LN(C17)
13 3 =C17*(B$1+A18-1)/(A18*(B$2+1)) =B18*LN(C18)
14 3 =C18*(B$1+A19-1)/(A19*(B$2+1)) =B19*LN(C19)
15 2 =C19*(B$1+A20-1)/(A20*(B$2+1)) =B20*LN(C20)
16 2 =C20*(B$1+A21-1)/(A21*(B$2+1)) =B21*LN(C21)
17 2 =C21*(B$1+A22-1)/(A22*(B$2+1)) =B22*LN(C22)
18 1 =C22*(B$1+A23-1)/(A23*(B$2+1)) =B23*LN(C23)
19 1 =C23*(B$1+A24-1)/(A24*(B$2+1)) =B24*LN(C24)
20 2 =C24*(B$1+A25-1)/(A25*(B$2+1)) =B25*LN(C25)
21 1 =C25*(B$1+A26-1)/(A26*(B$2+1)) =B26*LN(C26)
22 1 =C26*(B$1+A27-1)/(A27*(B$2+1)) =B27*LN(C27)
23 1 =C27*(B$1+A28-1)/(A28*(B$2+1)) =B28*LN(C28)



Problem 2 -- Parameter Estimation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D
r 0.96926
\alpha 0.21752 LL= -649.6888

x f_x P(X=x)
0 48 0.18837 -80.128
1 37 0.14996 -70.203
2 30 0.12128 -63.291
3 24 0.09859 -55.603
4 20 0.08035 -50.427
5 16 0.06559 -43.589
6 13 0.05360 -38.041
7 11 0.04383 -34.402
8 9 0.03586 -29.953
9 7 0.02935 -24.699

10 6 0.02403 -22.370
11 5 0.01969 -19.639
12 5 0.01613 -20.636
13 3 0.01321 -12.979
14 3 0.01083 -13.576
15 2 0.00888 -9.449
16 2 0.00728 -9.846
17 2 0.00597 -10.243
18 1 0.00489 -5.320
19 1 0.00401 -5.519
20 2 0.00329 -11.434
21 1 0.00270 -5.915
22 1 0.00221 -6.113
23 1 0.00182 -6.312



NBD for a Non-Unit Time Period

• Let X(t) be the number of exposures occuring in
an observation period of length t time units.

• If, for a unit time period, the distribution of
exposures at the individual-level is distributed
Poisson with rate parameter λ, then X(t) has a
Poisson distribution with rate parameter λt:

P(X(t) = x|λ) = (λt)xe−λt

x!

45

NBD for a Non-Unit Time Period

• The distribution of exposures at the population-
level is given by:

P(X(t) = x) =
∫∞
0
P(X(t) = x|λ)g(λ)dλ

= Γ(r + x)
Γ(r)x!

(
α

α+ t
)r ( t

α+ t
)x

• The mean of this distribution is given by
E[X(t)] = rt/α.
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Exposure Distributions: 1 week vs. 4 week

0 2 4 6 8 10 12 14 16 18 20+

# Exposures

0

30

60

90

#
P
eo
p
le

1 week
4 week

47

Effectiveness of Monthly Showing

• For t = 4, we have:
– P(X(t) = 0) = 0.056, and
– E

[
X(t)

] = 17.82
• It follows that:

– Reach = 1− P(X(t) = 0)
= 94.4%

– Frequency = E
[
X(t)

]/(
1− P(X(t) = 0))

= 18.9

– GRPs = 100× E[X(t)]
= 1782

48



Problem 2 -- Solution

1
2
3
4
5
6
7
8
9
10

A B
r ='Parameter Estimation'!B1
\alpha ='Parameter Estimation'!B2
t 4

P(X(t)=0) =(B2/(B2+B3))^B1
E[X(t)] =B1*B3/B2

Reach =1-B5
Frequency =B6/B8
GRPs =100*B6



Problem 2 -- Solution

1
2
3
4
5
6
7
8
9
10

A B
r 0.96926
\alpha 0.21752
t 4

P(X(t)=0) 0.056
E[X(t)] 17.82

Reach 94.4%
Frequency 18.9
GRPs 1782



Concepts and Tools Introduced

• Counting processes

• The NBD model

• Extrapolating an observed histogram over time

• Using models to estimate “exposure distributions”
for media vehicles

49

Further Reading

Greene, Jerome D. (1982), Consumer Behavior Models for

Non-Statisticians, New York: Praeger.

Morrison, Donald G. and David C. Schmittlein (1988),

“Generalizing the NBD Model for Customer Purchases: What

Are the Implications and Is It Worth the Effort?” Journal of

Business and Economic Statistics, 6 (April), 145–159.

Ehrenberg, A. S. C. (1988), Repeat-Buying, 2nd edn., London:

Charles Griffin & Company, Ltd. (Available online at

<http://www.empgens.com/repeat-buying.htm>.)
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Problem 3:
Test/Roll Decisions in

Segmentation-based Direct Marketing

(Modeling “Choice” Data)

51

The “Segmentation” Approach

1. Divide the customer list into a set of
(homogeneous) segments.

2. Test customer response by mailing to a random
sample of each segment.

3. Rollout to segments with a response rate (RR)
above some cut-off point,

e.g., RR >
cost of each mailing

unit margin

52



Ben’s Knick Knacks, Inc.

• A consumer durable product (unit margin =
$161.50, mailing cost per 10,000 = $3343)

• 126 segments formed from customer database on
the basis of past purchase history information

• Test mailing to 3.24% of database

53

Ben’s Knick Knacks, Inc.

Standard approach:

• Rollout to all segments with

Test RR >
3343/10,000
161.50

= 0.00207

• 51 segments pass this hurdle
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Test vs. Actual Response Rate
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Modeling Objective

Develop a model that leverages the whole data
set to make better informed decisions.
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Model Development

Notation:

Ns = size of segment s (s = 1, . . . , S)
ms = # members of segment s tested
Xs = # responses to test in segment s

Assume: All members of segment s have the same
(unknown) response probability ps ⇒ Xs
is a binomial random variable

P(Xs = xs|ms,ps) =
(
ms

xs

)
pxss (1− ps)ms−xs

57

Distribution of Response Probabilities

• Heterogeneity in ps is captured using a beta
distribution:

g(ps) = 1
B(α,β)

pα−1s (1− ps)β−1

• The beta function, B(α,β), can be expressed as

B(α,β) = Γ(α)Γ(β)
Γ(α+ β)

• The mean of the beta distribution is given by

E(ps) = α
α+ β

58



Illustrative Beta Density Functions
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Shape of the Beta Density
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The Beta Binomial Model

The aggregate distribution of responses to a mailing
of sizems is given by

P(Xs = xs|ms) =
∫ 1
0
P(Xs = xs|ms,ps)g(ps)dps

=
(
ms

xs

)
B(α+ xs, β+ms − xs)

B(α,β)

61

Estimating Model Parameters

The log-likelihood function is defined as:

LL(α,β|data) =
126∑
s=1
ln[P(Xs = xs|ms)]

=
126∑
s=1
ln
[

ms !
(ms − xs)!xs !

Γ(α+ xs)Γ(β+ms − xs)
Γ(α+ β+ms)︸ ︷︷ ︸
B(α+xs,β+ms−xs)

Γ(α+ β)
Γ(α)Γ(β)︸ ︷︷ ︸
1/B(α,β)

]

The maximum value of the log-likelihood function is
LL = −200.5, which occurs at α̂ = 0.439 and
β̂ = 95.411.
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Problem 3 -- Model

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

A B C D E F G H I
\alpha 0.439 B(\alpha,\beta) 0.273
\beta 95.411

LL = -200.548 cutoff 0.00207

Segment m_s x_s P(X=x|m) E[p_s|x_s] Roll?
1 34 0 0.87448 -0.134 0.00338 Y
2 102 1 0.16556 -1.798 0.00727 Y
3 53 0 0.82334 -0.194 0.00295 Y
4 145 2 0.07694 -2.565 0.01013 Y
5 1254 62 0.00015 -8.793 0.04626 Y
6 144 7 0.00301 -5.805 0.03101 Y
7 1235 80 0.00003 -10.403 0.06044 Y
8 573 34 0.00014 -8.869 0.05149 Y
9 1083 24 0.00362 -5.622 0.02073 Y

10 352 5 0.03010 -3.503 0.01214 Y
11 817 7 0.02810 -3.572 0.00815 Y
12 118 0 0.70182 -0.354 0.00205 N
13 1049 3 0.06653 -2.710 0.00300 Y
14 452 3 0.06735 -2.698 0.00628 Y
15 338 2 0.09913 -2.311 0.00562 Y
16 168 0 0.63981 -0.447 0.00166 N
17 242 3 0.05465 -2.907 0.01018 Y
18 185 1 0.18091 -1.710 0.00512 Y
19 116 0 0.70473 -0.350 0.00207 Y
20 69 1 0.14588 -1.925 0.00873 Y
21 193 1 0.18122 -1.708 0.00498 Y
22 82 1 0.15531 -1.862 0.00809 Y
23 265 1 0.18042 -1.712 0.00399 Y
24 171 0 0.63664 -0.452 0.00164 N
25 1554 7 0.03089 -3.477 0.00451 Y
26 1339 4 0.05107 -2.975 0.00309 Y
27 1167 4 0.05197 -2.957 0.00352 Y
28 621 2 0.09808 -2.322 0.00340 Y
29 1013 1 0.13667 -1.990 0.00130 N
30 544 1 0.16210 -1.820 0.00225 Y
31 731 1 0.15052 -1.894 0.00174 N
32 326 0 0.52048 -0.653 0.00104 N
33 772 1 0.14826 -1.909 0.00166 N
34 335 1 0.17658 -1.734 0.00334 Y
35 235 0 0.57918 -0.546 0.00133 N
36 218 0 0.59277 -0.523 0.00140 N
37 221 0 0.59030 -0.527 0.00139 N
38 103 1 0.16596 -1.796 0.00724 Y
39 170 0 0.63769 -0.450 0.00165 N
40 45 0 0.84365 -0.170 0.00312 Y
41 237 0 0.57764 -0.549 0.00132 N
42 86 0 0.75377 -0.283 0.00241 Y
43 297 1 0.17887 -1.721 0.00366 Y
44 415 0 0.47847 -0.737 0.00086 N
45 187 0 0.62053 -0.477 0.00155 N
46 248 0 0.56944 -0.563 0.00128 N



Estimated Distribution of p
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α̂ = 0.439, β̂ = 95.411, p̄ = 0.0046
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Applying the Model

What is our best guess of ps given a response
of xs to a test mailing of sizems?

Intuitively, we would expect

E(ps|xs,ms) ≈ω
α

α+ β + (1−ω)
xs
ms

64



Bayes Theorem

• The prior distribution g(p) captures the possible
values p can take on, prior to collecting any
information about the specific individual.

• The posterior distribution g(p|x) is the conditional
distribution of p, given the observed data x. It
represents our updated opinion about the possible
values p can take on, now that we have some
information x about the specific individual.

• According to Bayes theorem:

g(p|x) = f(x|p)g(p)∫
f(x|p)g(p)dp

65

Bayes Theorem

For the beta-binomial model, we have:

g(ps|Xs = xs,ms) =

binomial︷ ︸︸ ︷
P(Xs = xs|ms,ps)

beta︷ ︸︸ ︷
g(ps)∫ 1

0
P(Xs = xs|ms,ps)g(ps)dps︸ ︷︷ ︸

beta-binomial

= 1
B(α+ xs, β+ms − xs)p

α+xs−1
s (1− ps)β+ms−xs−1

which is a beta distribution with parameters α+ xs
and β+ms − xs .
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Distribution of p
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prior (α̂ = 0.439, β̂ = 95.411)
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posterior with xs = 80,ms = 1235

....................................................................................................................................................................................................................................................................................................................................................................................................................................................................

posterior with xs = 0,ms = 171

.......................................................................

p̄ = 0.0604

.......................................................................

p̄ = 0.0016

.......................................................................

p̄ = 0.0046

67

Applying the Model

Recall that the mean of the beta distribution is
α/(α+ β). Therefore

E(ps|Xs = xs,ms) = α+ xs
α+ β+ms

which can be written as(
α+ β

α+ β+ms

)
α

α+ β +
(

ms

α+ β+ms

)
xs
ms

• a weighted average of the test RR (xs/ms) and the
population mean (α/(α+ β)).

• “Regressing the test RR to the mean”
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Model-Based Decision Rule

• Rollout to segments with:

E(ps|Xs = xs,ms) >
3343/10,000
161.5

= 0.00207

• 66 segments pass this hurdle

• To test this model, we compare model predictions
with managers’ actions. (We also examine the
performance of the “standard” approach.)
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Results

Standard Manager Model

# Segments (Rule) 51 66

# Segments (Act.) 46 71 53

Contacts 682,392 858,728 732,675

Responses 4,463 4,804 4,582

Profit $492,651 $488,773 $495,060

Use of model results in a profit increase of $6287;
126,053 fewer contacts, saved for another offering.
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Concepts and Tools Introduced

• “Choice” processes

• The Beta Binomial model

• “Regression-to-the-mean” and the use of models to
capture such an effect

• Bayes theorem (and “empirical Bayes” methods)

• Using “empirical Bayes” methods in the
development of targeted marketing campaigns
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Further Reading

Colombo, Richard and Donald G. Morrison (1988),

“Blacklisting Social Science Departments with Poor Ph.D.

Submission Rates,” Management Science, 34 (June),

696–706.

Morwitz, Vicki G. and David C. Schmittlein (1998), “Testing

New Direct Marketing Offerings: The Interplay of

Management Judgment and Statistical Models,”

Management Science, 44 (May), 610–628.

Sabavala, Darius J. and Donald G. Morrison (1977), “A

Model of TV Show Loyalty,” Journal of Advertising

Research, 17 (December), 35–43.
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Further Applications and Tools/
Modeling Issues

73

Recap

• The preceding three problems introduce simple
models for three behavioral processes:

– Timing �→ “when”
– Counting �→ “how many”
– “Choice” �→ “whether/which”

• Each of these simple models has multiple
applications.

• More complex behavioral phenomena can be
captured by combining models from each of these
processes.
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Further Applications: Timing Models

• Repeat purchasing of new products

• Response times:

– Coupon redemptions

– Survey response

– Direct mail (response, returns, repeat sales)

• Customer retention/attrition

• Other durations:

– Salesforce job tenure

– Length of web site browsing session
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Further Applications: Count Models

• Repeat purchasing

• Customer concentration (“80/20” rules)

• Salesforce productivity/allocation

• Number of page views during a web site browsing
session
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Further Applications: “Choice” Models
• Brand choice

HH #1 ✲×A ×B ×A ×A

HH #2 ✲×B

HH #3 ✲×B ×A

...
HH #h ✲×A ×B ×B ×B

• Media exposure

• Multibrand choice (BB → Dirichlet Multinomial)
• Taste tests (discrimination tests)

• “Click-through” behavior

77

Integrated Models

• Counting + Timing

– catalog purchases (purchasing | “alive” & “death” process)

– “stickiness” (# visits & duration/visit)

• Counting + Counting

– purchase volume (# transactions & units/transaction)

– page views/month (# visits & pages/visit)

• Counting + Choice

– brand purchasing (category purchasing & brand choice)

– “conversion” behavior (# visits & buy/not-buy)
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A Template for Integrated Models

Stage 2

Counting Timing Choice

Counting

Stage 1 Timing

Choice
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Further Issues

Relaxing usual assumptions:

• Non-exponential purchasing (greater regularity)
�→ non-Poisson counts

• Non-gamma/beta heterogeneity (e.g., “hard
core” nonbuyers, “hard core” loyals)

• Nonstationarity— latent traits vary over time

The basic models are quite robust to these
departures.
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Extensions

• Latent class/finite mixture models

• Introducing covariate effects

• Hierarchical Bayes methods

81

The Excel spreadsheets associated with this tutorial,
along with electronic copies of the tutorial materials
and a “supplementary materials handout” that works
through the math of the models, can be found at:

http://brucehardie.com/talks.html

An annotated list of key books for those interested in
applied probability modelling can be found at:

http://brucehardie.com/notes/001/
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1 Introduction

This note provides further details on the models presented in the Advanced
Research Techniques Forum tutorial “Applied Probability Models in Mar-
keting Research: Introduction” conducted by Bruce Hardie and Pete Fader.
In particular, the models are formally derived in their general form, with the
associated mathematical steps made explicit. Furthermore, methods for pa-
rameter estimation are examined and, where deemed appropriate, the mean
and variance derived. Finally, the application of empirical Bayes methods is
discussed and the relevant formulae derived in a step-by-step manner.

2 Preliminaries

This note assumes basic familiarity with a set of probability distributions
and the associated notation. As a refresher, we briefly review the probability
distributions that are the building-blocks of the probability models consid-
ered in this tutorial. For each distribution, we list its density function, mean
and variance, key properties, and relevant additional information. (The pa-
rameterization of each distribution is consistent with common usage in the
current marketing research literature.)

2.1 Gamma and Beta Functions

The (complete) gamma function Γ(x) is defined by the integral

Γ(x) =
∫ ∞

0
tx−1e−tdt, x > 0

Clearly Γ(1) = 1. Integrating by parts, we get Γ(x) = (x − 1)Γ(x − 1). It
follows that if x is a positive integer, Γ(x) = (x − 1)!.

The (complete) beta function B(α, β) is defined by the integral

B(α, β) =
∫ 1

0
tα−1(1− t)β−1dt, α > 0, β > 0

The relationship between the gamma and beta functions is

B(α, β) =
Γ(α)Γ(β)
Γ(α+ β)

1



2.2 Continuous Distributions

Exponential

The continuous random variableX is said to have an exponential distribution
if it has a density function of the form

f(x|λ) = λe−λx

where x > 0 and λ > 0. (The parameter λ is sometimes called the rate
parameter or, alternatively, the scale parameter.) The corresponding cdf is

F (x|λ) = 1− e−λx

The mean and variance of the exponential distribution are E(X) = 1/λ and
var(X) = 1/λ2, respectively.

Gamma

The continuous random variable X is said to have a gamma distribution if
it has a density function of the form

f(x|r, α) = αrxr−1e−αx

Γ(r)

where x > 0 and r, α > 0. (The parameters r and α are sometimes called
the shape and scale parameters, respectively.) For non-integer r, there is no
closed-form cdf for the gamma distribution. The mean and variance of the
gamma distribution are E(X) = r/α and var(X) = r/α2, respectively. We
note that the gamma density reduces to the exponential density when r = 1;
furthermore, for integer r, we have the Erlang density.

The gamma distribution is a flexible, right-skewed distribution for con-
tinuous random variables defined on the positive real line (i.e., x > 0). For
r < 1, the density is strictly decreasing from an infinite peak at 0. For r = 1,
the density is strictly decreasing from the point α at x = 0. For r > 1, the
density increases from the origin to a mode at (r − 1)/α, then decreases.
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Beta

The continuous random variable X is said to have a beta distribution if it
has a density function of the form

f(x|α, β) = 1
B(α, β)

xα−1(1− x)β−1

where 0 ≤ x ≤ 1 and α, β > 0. The mean and variance of the beta dis-
tribution are E(X) = α/(α + β) and var(X) = αβ/[(α + β)2(α + β + 1)],
respectively.

The beta distribution is a flexible distribution for continuous random
variables defined on the unit interval (i.e., [0, 1]). Its density can take on a
number of shapes, depending on the specific values of α and β. If α < 1, the
density has an infinite peak at 0 (i.e., it has a ‘reverse J-shape’). If β < 1,
the density has an infinite peak at 1 (i.e, it is ‘J-shaped’). When α, β < 1,
the density is ‘U-shaped.’ For α = β = 1, we have a uniform distribution
on the unit interval. In the case of α, β > 1, the density has a mode at
(α − 1)/(α + β − 2). It follows that the beta density is symmetric when
α = β. As α, β increase, the density tends to a spike at its mean.

Derivation: if Y1 and Y2 are independent gamma random variables with
shape parameters α and β, respectively, and common scale parameter λ, the
random variable X = Y1/(Y1 + Y2) has a beta distribution with parameters
(α, β).

Dirichlet

The continuous k-dimensional random vector X = (X1, . . . , Xk)′ is said to
have a Dirichlet distribution if it has a density function of the form

f(x|a) = Γ(S)∏k
j=1 Γ(aj)

k∏
j=1

x
aj−1
j

where 0 ≤ xj ≤ 1 with
∑k

j=1 xj = 1, a = (a1, . . . , ak)′ with aj > 0, and
S ≡ ∑k

j=1 aj. Note that because
∑k

j=1 xj = 1, this is actually a (k − 1)-
dimensional distribution since xk is redundant and can be replaced by 1 −∑k−1

j=1 xj. Consequently, the density is sometimes written as
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f(x|a) = Γ(S)∏k
j=1 Γ(aj)

(
k−1∏
j=1

x
aj−1
j

)(
1−

k−1∑
j=1

xj

)ak−1

or

f(x1, . . . , xk−1|a) = Γ(S)∏k
j=1 Γ(aj)

(
k−1∏
j=1

x
aj−1
j

)(
1−

k−1∑
j=1

xj

)ak−1

Furthermore, because
∑k

j=1 xj = 1, any integration of the complete Dirichlet
pdf is performed with respect to x1, x2, . . . , xk−1, where the integration limits
are [0, 1], [0, 1− x1], . . . , [0, 1−∑k−2

j=1 xj], respectively.

The mean of the Dirichlet distribution is E(X) = a/S, with E(Xj) =
aj/S. The variance-covariance matrix of the Dirichlet distribution is var(X) =
[Diag(Sa) − aa′]/[S2(S + 1)], with var(Xj) = aj(S − aj)/[S2(S + 1)], and
cov(Xj, Xj′) = −ajaj′/[S2(S + 1)].

The Dirichlet distribution is the multivariate generalization of the beta
distribution; for k = 2, we have the beta distribution with α = a1, β = a2,
and x2 = 1− x1. The marginal distribution of Xj, an element of X, is beta
with parameters (aj, S − aj).

Derivation: if Y1, . . . , Yk are independent gamma random variables with
shape parameters aj (j = 1, . . . , k), and common scale parameter λ, the
random vector X = (X1, . . . , Xk)′, where Xj = Yj/(

∑k
j′=1 Yj′) (j = 1, . . . , k)

has a Dirichlet distribution with parameter vector a = (a1, . . . , ak)′.

2.3 Discrete Distributions

Poisson

The discrete random variable X is said to have a Poisson distribution if it
has a density function of the form

P (X = x|λ) = e−λλx

x!
where x = 0, 1, 2, . . . and λ > 0. (The parameter λ is sometimes called
the rate parameter.) The mean and variance of the Poisson distribution are
E(X) = λ and var(X) = λ, respectively.
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The Poisson random variable X represents the number of occurrences of
a rare event in a unit time interval or two/three dimensional space. In many
applications, we are interested in the number of occurrences in a time interval
of length t (or its spatial equivalent). In this case, the random variable of
interest has a Poisson distribution with rate parameter λt.

If X1, . . . , Xk are independent Poisson random variables with rate pa-
rameters λi (i = 1, . . . , k), then the random variable Y =

∑k
i=1 Xi has a

Poisson distribution with rate parameter λ =
∑k

i=1 λi. This is called the
reproductive property of the Poisson distribution.

Binomial

The discrete random variable X is said to have a binomial distribution if it
has a density function of the form

P (X = x|n, p) =
(
n

x

)
px(1− p)n−x

where x = 0, 1, 2, . . . , n for positive integer n and 0 ≤ p ≤ 1. The mean and
variance of the binomial distribution are E(X) = np and var(X) = np(1−p),
respectively.

The binomial random variable X is interpreted as the total number of
successes occurring in n independent success/failure (i.e., Bernoulli) trials,
where p is the probability of success on each individual trial.

Multinomial

The discrete k-dimensional random vector X = (X1, . . . , Xk)′ is said to have
a multinomial distribution if it has a density function of the form

P (X = x|n,p) =
(

n

x1, . . . , xk

) k∏
j=1

p
xj

j

where xj ∈ {0, 1, 2, . . . , n} with∑k
j=1 xj = n, and p = (p1, . . . , pk)′ with 0 ≤

pj ≤ 1 and
∑k

j=1 pj = 1. Note that because of the restrictions
∑k

j=1 xj = n

and
∑k

j=1 pj = 1, this is actually a (k − 1)-dimensional distribution since
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xk = n − ∑k−1
j=1 xj and pk = 1 − ∑k−1

j=1 pj. Consequently, the density is
sometimes written as

P (X = x|n,p) =
(

n

x1, . . . , xk

)(
k−1∏
j=1

p
xj

j

)(
1−

k−1∑
j=1

pj

)n−∑k−1
j=1 xj

or

p(x1, x2, . . . , xk−1|n,p) =(
n

x1, . . . , xk−1, n −∑k−1
j=1 xj

)(
k−1∏
j=1

pxi
j

)(
1−

k−1∑
j=1

pj

)n−∑k−1
j=1 xj

The random variable Xj (j = 1, . . . , k), an element of X, is interpreted
as the number of times outcome j occurs in n independent trials, where
each trial results in one of k mutually exclusive (and collective exhaustive)
outcomes, and the probability of outcome j occurring on any trial equal to
pj.

The mean of the multinomial distribution is E(X) = np, with E(Xj) =
npj. The variance-covariance matrix of the multinomial distribution is var(X)
= n[Diag(p)−pp′], with var(Xj) = npj(1− pj) and cov(Xj, Xj′) = −npjpj′ .

The multinomial distribution is the multivariate generalization of the
binomial distribution; for k = 2, we have the binomial distribution with
p = p1 = 1 − p2 and x2 = n − x1. The marginal distribution of Xj, an
element of X, is binomial with parameters (n, pj).

3 The Exponential-Gamma Model

The exponential-gamma model—also known as the Lomax or Pareto distri-
bution—results when we assume that

• the individual-level behavior of interest (e.g., time of trial purchase for
a new product) is characterized by the exponential distribution with
rate parameter λ, which we denote by F (t|λ), and

• the values of λ are distributed across the population according to a
gamma distribution, denoted by g(λ).
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The aggregate distribution of the behavior of interest, which we denote
by F (t), is obtained by weighting each F (t|λ) by the likelihood of that value
of λ occurring (i.e., g(λ)). This is formally denoted by:

F (t) =
∫ ∞

0
F (t|λ)g(λ)dλ

3.1 Model Derivation

In order to derive the aggregate distribution associated with exponentially-
distributed event times at the individual-level and gamma heterogeneity, we
must solve the following integral

P (T ≤ t) =
∫ ∞

0
(1− e−λt)︸ ︷︷ ︸
exponential

gamma︷ ︸︸ ︷
αrλr−1e−αλ

Γ(r)
dλ

This is done in the following manner:

1. Expand the above expression:

P (T ≤ t) =
∫ ∞

0

αrλr−1e−αλ

Γ(r)
−
∫ ∞

0
e−λtα

rλr−1e−αλ

Γ(r)

2. By definition, the value of the first integral is 1; therefore we have

P (T ≤ t) = 1−
∫ ∞

0
e−λtα

rλr−1e−αλ

Γ(r)
dλ

3. Combine terms and move all non-λ terms to the left of the integral
sign. This gives us

P (T ≤ t) = 1− αr

Γ(r)

∫ ∞

0
λr−1e−λ(α+t)dλ

4. We therefore have to solve the definite integral∫ ∞

0
λr−1e−λ(α+t)dλ
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The “trick” is to transform the terms to the right of the integral sign
into a known pdf, which integrates to 1. Looking closely at these terms,
we see the heart of a gamma density with shape parameter r and scale
parameter α + t. Multiplying the integral by [Γ(r)/(α + t)r]/[(α +
t)r/Γ(r)], we can write our expression for P (T ≤ t) as

P (T ≤ t) = 1− αr

Γ(r)
Γ(r)

(α+ t)r

∫ ∞

0

(α+ t)rλr−1e−λ(α+t)

Γ(r)︸ ︷︷ ︸
gamma pdf

dλ

5. As the integrand is a gamma pdf, the definite integral, by definition,
equals 1, and we therefore write the equation as

P (T ≤ t) = 1−
(

α

α+ t

)r

We call this the exponential-gamma model.

3.2 Estimating Model Parameters

In order to apply the exponential-gamma model, we must first develop esti-
mates of the two model parameters, r and α, from the given sample data.
The primary method at the modeler’s disposal is the method of maximum
likelihood.

In most cases, the sample data do not report the exact time at which each
individual’s behavior occured. Rather, we know that the behavior occurred in
the time interval (ti−1, ti] for i = 1, 2, . . . , C. The probability of the behavior
occuring in the ith time interval is given by F (ti)−F (ti−1). Furthermore, we
typically have “right-censored” data; that is, the observation period finishes
at tC and we know that the behavior of interest has not yet occurred for a
number of individuals. This implies that it will occur in the interval (tC ,∞),
and the probability that this occurs is P (T > tC) = 1− F (tC).

Let fi be the number of individuals whose behavior occurred in the ith
time interval (i = 1, . . . , C) and fC+1 be the number of right-censored indi-
viduals (e.g., those individuals who have not made a trial purchase by tC).
The log-likelihood function associated with the sample data is given by
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LL(r, α | data) =
C∑

i=1

fi ln
[
F (ti|r, α)− F (ti−1|r, α)

]
+ fC+1 ln

[
1− F (tC |r, α)], where t0 = 0.

Using standard numerical optimization software, we find the values of r and α
that maximize this log-likelihood function; these are the maximum likelihood
estimates of r and α.

4 The NBD Model

The NBD model results when we assume that

• the individual-level behavior of interest is a “count” variable (e.g., num-
ber of units of a product purchased in a unit time period) and can be
characterized by the Poisson distribution with rate parameter λ, which
we denote by P (X = x|λ), and

• the values of λ are distributed across the population according to a
gamma distribution, denoted by g(λ).

The aggregate distribution of the behavior of interest, which we denote
by P (X = x), is obtained by weighting each P (X = x|λ) by the likelihood
of that value of λ occurring (i.e., g(λ)). This is formally denoted by

P (X = x) =
∫ ∞

0
P (X = x|λ)g(λ)dλ

4.1 Model Derivation

In order to derive the aggregate distribution associated with Poisson events
at the individual-level and gamma heterogeneity, we must solve the following
integral:

P (X = x) =
∫ ∞

0

λxe−λ

x!︸ ︷︷ ︸
Poisson

gamma︷ ︸︸ ︷
αrλr−1e−αλ

Γ(r)
dλ
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This is done in the following manner:

1. Combine terms and move all non-λ terms to the left of the integral
sign. This gives us

P (X = x) =
αr

x! Γ(r)

∫ ∞

0
λx+r−1e−λ(α+1)dλ

2. We therefore have to solve the definite integral∫ ∞

0
λx+r−1e−λ(α+1)dλ

The “trick” is to transform the terms to the right of the integral sign
into a known pdf, which integrates to 1. Looking closely at these terms,
we see the heart of a gamma density with shape parameter x + r and
scale parameter α + 1. Multiplying the integral by [Γ(r + x)/(α +
1)r+x]/[(α+ 1)r+x/Γ(r)], we can write our expression for P (X = x) as

P (X = x) =
αr

x! Γ(r)
Γ(r + x)
(α+ 1)r+x

∫ ∞

0

(α+ 1)r+xλx+r−1e−λ(α+1)

Γ(r + x)︸ ︷︷ ︸
gamma pdf

dλ

3. As the integrand is a gamma pdf, the definite integral, by definition,
equals 1, and we therefore write the equation as

P (X = x) =
αrΓ(r + x)

x! Γ(r)(α+ 1)r+x

=
Γ(r + x)
Γ(r)x!

(
α

α+ 1

)r ( 1
α+ 1

)x

This is called the Negative Binomial Distribution, or NBD model.

Since x! = Γ(x + 1), we sometimes see Γ(r + x)/Γ(r)x! expressed as
Γ(r+x)/Γ(r)Γ(x+1). Alternatively, we sometimes see Γ(r+x)/Γ(r)x!
expressed as the binomial coefficient(

r + x − 1
x

)
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4.2 Mean and Variance of the NBD

While the mean and variance of the NBD can be derived using standard
expressions (e.g., E(X) =

∑∞
x=0 xP (X = x)), a more elegant approach is to

compute them by conditioning.

Mean of the NBD

To compute the mean by conditioning, we evaluate

E(X) = EY

[
E(X|Y )]

where EY [·] denotes expectation with respect to the distribution of Y (i.e.,∫
E(X|Y = y)f(y) dy. For the NBD, we have

E(X) = Eλ

[
E(X|λ)]

Conditional on λ, X is distributed Poisson, and the mean of the Poisson
distribution is λ; therefore E(X) = E(λ). The latent variable λ has a gamma
distribution, and we know that the mean of the gamma distribution is E(λ) =
r/α. Therefore the mean of the NBD is

E(X) =
r

α

Variance of the NBD

We can derive the formula for the variance of X is a similar manner. To
compute the variance by conditioning, we evaluate

var(X) = EY

[
var(X|Y )]+ varY [E(X|Y )]

where varY [·] denotes variance with respect to the distribution of Y. For the
NBD, we have

var(X) = Eλ

[
var(X|λ)]+ varλ

[
E(X|λ)]

Conditional on λ, X is distributed Poisson, and the variance of the Poisson
distribution is λ. Therefore we have

var(X) = E(λ) + var(λ)
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We know that the variance of the gamma distribution is var(λ) = r/α2.
Therefore the variance of the NBD is

var(X) =
r

α
+

r

α2

4.3 Estimating Model Parameters

In order to apply the NBD model, we must first develop estimates of the
two model parameters, r and α, from the given sample data. Three methods
are at the modeler’s disposal: maximum likelihood, method of moments, and
means and zeroes.

Approach 1: Maximum Likelihood

Let xi be the number of events for individual i (i = 1, . . . , N) in the observa-
tion period. By definition, the likelihood function is the joint density of the
observed data. Assuming the xi are independent, this is the product of NBD
probabilities for each xi. Equivalently, the log-likelihood function is given by

LL(r, α | data) =
N∑

i=1

ln
[
P (X = xi|r, α)

]
Using standard numerical optimization software, we find the values of r and α
that maximize this log-likelihood function; these are the maximum likelihood
estimates of r and α.

Let x∗ = max(x1, x2, . . . , xN) and fj the number of xi = j. We can write
the log-likelihood function as

LL(r, α | data) =
x∗∑

x=0

fx ln
[
P (X = x|r, α)]

Censored Data: In many cases, the data available for model estimation
are of the form

x 0 1 2 3+
fx 814 128 22 7
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These data are censored —we know 7 panelists made at least 3 purchases,
but do not know the exact number of purchases they made. It is possible
to estimate the model parameters using maximum likelihood methods by
modifying the log-likelihood function in the following manner. Let x+ denote
the censoring point in the data—3 in the above example. The log-likelihood
function can be written as

LL(r, α | data) =
x+−1∑
x=0

fx ln
[
P (X = x|r, α)]+ fx+ ln

[
P (X ≥ x+|r, α)]

=
x+−1∑
x=0

fx ln
[
P (X = x|r, α)]+ fx+ ln

[
1−

x+−1∑
x=0

P (X = x|r, α)
]

Approach 2: Method of Moments

Another approach to estimating the parameters of a model from a particular
dataset is to use the method of moments, which sees us equating the sample
moments with their population counterparts. (As the NBD has two parame-
ters, we focus on the first two moments— the mean and variance.) Denoting
the sample mean by x̄ and the sample variance by s2, we have

x̄ = r/α (1)
s2 = r/α+ r/α2 (2)

Substituting (1) into (2), we get s2 = x̄+ x̄/α, which implies

α̂ =
x̄

s2 − x̄

From (1), it follows that

r̂ = α̂x̄ (3)

Approach 3: Means and Zeros

Just as the method of moments sees us equating two sample-based moments
with their population counterparts, the method of “means and zeros” sees
us equating the sample mean and sample proportion of zeros with their pop-
ulation counterparts.
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Now the proportion of zeros, as predicted by the NBD, is

P (X = 0) =
(

α

α+ 1

)r

(4)

Let P0 be the sample proportion of zeros, and x̄ the sample mean. From (1)
we have r = αx̄. Substituting this into (4) and equating with the sample
proportion of zeros, we have

P0 =
(

α

α+ 1

)αx̄

We solve this for α̂—using a computer—and estimate r̂ using (3).

4.4 Computing NBD Probabilities

Given r and α, NBD probabilities can be calculated directly by evaluating
the standard NBD formula, i.e.,

P (X = x) =
Γ(r + x)
Γ(r)x!

(
α

α+ 1

)r ( 1
α+ 1

)x

This assumes it is easy to numerically evaluate Γ(·).
Alternatively, the recursive computation of NBD probabilities is straight-

forward, using the following forward recursion formula from P (X = 0):

P (X = x) =



(
α

α+ 1

)r

x = 0

r + x − 1
x(α+ 1)

× P (X = x − 1) x ≥ 1

4.5 The NBD for a Non-Unit Time Period

The preceding discussion and development of the NBD assumes that the
length of our observation period is one unit of time. What is the form of the
NBD applied to an observation period of length t time units?

Let X(t) be the number of events occuring in an observation period of
length t time units. If, for a unit time period, the distribution of events
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at the individual-level is Poisson with rate parameter λ, X(t) has a Poisson
distribution with rate parameter λt. Therefore, the expression for NBD
probabilities for a time period of length t is

P (X(t) = x) =
∫ ∞

0

(λt)xe−λt

x!︸ ︷︷ ︸
Poisson

gamma︷ ︸︸ ︷
αrλr−1e−αλ

Γ(r)
dλ

=
αrtx

x! Γ(r)

∫ ∞

0
λx+r−1e−λ(α+t)dλ

=
αrtx

x! Γ(r)
Γ(r + x)
(α+ t)r+x

∫ ∞

0

(α+ t)r+xλx+r−1e−λ(α+t)

Γ(r + x)
dλ

=
Γ(r + x)
Γ(r)x!

(
α

α+ t

)r (
t

α+ t

)x

The mean and variance of X(t) can easily be determined by conditioning.
E
[
X(t)

]
= E

{
E
[
X(t)|λ]}. SinceX(t) is distributed Poisson with parameter

λt, it follows that E
[
X(t)

]
= E(λt) = tE(λ) = rt/α. Similarly, the variance

of X(t) is given by:

var
[
X(t)

]
= Eλ

[
var(X(t)|λ)]+ varλ

[
E(X(t)|λ)]

= E(λt) + var(λt)
= tE(λ) + t2var(λ)

=
rt

α
+

rt2

α2

The associated formula for computing NBD probability using forward
recursion from P (X = 0) is

P (X = x) =



(
α

α+ t

)r

x = 0

(r + x − 1)t
x(α+ t)

× P (X = x − 1) x ≥ 1

5 The Beta-Binomial Model

The beta-binomial model results when we assume that
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• the individual-level behavior of interest reflects the outcome of a series
of independent choices (e.g., the number of times a target product is
purchased given n category purchases) and can be characterized by the
binomial distribution with parameter p, which we denote by P (X =
x|n, p), and

• the values of p are distributed across the population according to a beta
distribution, denoted by g(p).

The aggregate distribution of the behavior of interest, denoted by P (X =
x|n), is obtained by weighting each P (X = x|n, p) by the likelihood of that
value of p occurring (i.e., g(p)). This is formally denoted by

P (X = x|n) =
∫ 1

0
P (X = x|n, p)g(p)dp

5.1 Model Derivation

In order to derive the aggregate distribution associated with a binomial choice
process at the individual-level and beta heterogeneity, we must solve the
following integral:

P (X = x) =
∫ 1

0

(
n

x

)
px(1− p)n−x︸ ︷︷ ︸
binomial

1
B(α, β)

pα−1(1− p)β−1︸ ︷︷ ︸
beta

dp

This is done in the following manner:

1. Combine terms and move all non-p terms to the left of the integral sign.
This gives us

P (X = x) =
(
n

x

)
1

B(α, β)

∫ 1

0
pα+x−1(1− p)β+n−x−1dp

2. We therefore have to solve the definite integral∫ 1

0
pα+x−1(1− p)β+n−x−1dp
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The “trick” is to transform the terms to the right of the integral sign
into a known pdf, which integrates to 1. Looking closely at this, we
see that its structure mirrors the density of the beta distribution with
parameters α + x and β + n − x. Multiplying the integral by B(α +
x, β + n − x)/B(α + x, β + n − x), we can write our expression for
P (X = x) as

P (X = x) =
(
n

x

)
B(α+ x, β + n − x)

B(α, β)
×∫ 1

0

1
B(α+ x, β + n − x)

pα+x−1(1− p)β+n−x−1︸ ︷︷ ︸
beta pdf

dp

3. As the integrand is a beta pdf, the definite integral, by definition, equals
1, and we therefore write the equation as

P (X = x) =
(
n

x

)
B(α+ x, β + n − x)

B(α, β)

This is called the beta-binomial (or BB) model.

5.2 Mean and Variance of the Beta-Binomial

While the mean and variance of the BB can be derived using standard ex-
pressions (e.g., E(X) =

∑n
x=0 xP (X = x)), a more elegant approach is to

compute them by conditioning.

Mean of the BB

To compute the mean by conditioning—see section 4.2—we evaluate

E(X) = E p

[
E(X|p)]

where E p[·] denotes expectation with respect to the distribution of p. Condi-
tional on p, X is distributed binomial, and the mean of the binomial distribu-
tion is np; therefore E(X) = E(np). Since n is a constant, this is equivalent
to E(X) = nE(p). As the latent variable p has a beta distribution, and we
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know that the mean of the beta distribution is E(p) = α/(α + β), it follows
that the mean of the beta-binomial distribution is

E(X) =
nα

α+ β

Variance of the BB

We can derive the formula for the variance of X is a similar manner—see
section 4.2—we evaluate

var(X) = E p

[
var(X|p)]+ var p

[
E(X|p)]

where var p[·] denotes variance with respect to the distribution of p. Con-
ditional on p, X is distributed binomial, and the variance of the binomial
distribution is np(1− p). Therefore we have

var(X) = E
[
np(1− p)

]
+ var(np)

= nE(p)− nE(p2) + n2var(p)

We know that the variance of the beta distribution is var(p) = αβ/[(α+
β)2(α + β + 1)]. Recalling that var(X) = E(X2) − E(X)2, it follows that
E(p2) = var(p) + E(p)2. Substituting the expressions for E(p), E(p2), and
var(p) into the above equation and simplifying, we arrive at the following
expression for the variance of the beta-binomial distribution:

var(X) =
nαβ(α+ β + n)

(α+ β)2(α+ β + 1)

5.3 Estimating Model Parameters

In order to apply the BB model, we must first develop estimates of the two
model parameters, α and β, from the given sample data. Two methods are
at the modeler’s disposal: method of moments and maximum likelihood. Let
xi be the number of successes out of ni trials for individual i (i = 1, . . . , N)
in the observation period.
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Approach 1: Maximum Likelihood

By definition, the likelihood function is the joint density of the observed data.
Assuming the xi are independent, this is the product of BB probabilities for
each xi, given ni. The log-likelihood function is therefore

LL(α, β | data) =
N∑

i=1

ln
[
P (X = xi|ni, α, β)

]
Using standard numerical optimization software, we find the values of α
and β that maximize this log-likelihood function; these are the maximum
likelihood estimates of α and β.

In many applications of the BB, ni = n ∀ i. Let fx be the number of
xi = x; note that

∑n
x=0 fx = N . We can write the log-likelihood function as

LL(α, β | data) =
n∑

x=0

fx ln
[
P (X = x|n, α, β)]

Approach 2: Method of Moments

For the case of ni = n ∀ i, another approach to estimating the parameters
of the BB model is the method of moments, which sees us equating the
sample moments with their population counterparts. (As the BB has two
parameters, we focus on the first two moments— the mean and variance.)
Denoting the sample mean by x̄ and the sample variance by s2, we have

x̄ =
nα

α+ β
(5)

s2 =
nαβ(α+ β + n)

(α+ β)2(α+ β + 1)
(6)

Solving (5) for β, we get

β̂ =
α̂(n − x̄)

x̄
(7)

To arrive at the method of moments estimator for α, we first note that,
from (5), α + β = nα/x̄. Substituting this expression for α + β, along with
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that for β from (7), into (6), we solve for α. Performing the requisite algebra,
we get

α̂ =
x̄[x̄(n − x̄)− s2]
s2n − x̄(n − x̄)

(8)

6 The Dirichlet-Multinomial Model

The Dirichlet-multinomial model results when we assume that

• the individual-level behavior of interest reflects the vector of outcomes
of a series of independent choices (e.g., the number of times brands A,
B, C, and D are each chosen given n category purchases) and can be
characterized by the multinomial distribution with parameter vector p,
which we denote by P (X = x|n,p), and

• the values of p are distributed across the population according to a
Dirichlet distribution, denoted by g(p).

The aggregate distribution of the behavior of interest, denoted by P (X =
x|n), is obtained by weighting each P (X = x|n,p), by the likelihood of that
value of the vector p occurring (i.e., g(p)). This is denoted by

P (X = x|n) =
∫

P (X = x|n,p)g(p)dp

More formally, we should note that since the elements of any p, of length
k, sum to 1, the integration is actually performed with respect to the k −
1 variables p1, p2, . . . , pk−1, where the integration limits are [0, 1], [0, 1 −
p1], . . . , [0, 1−∑k−2

j=1 pj], respectively.

6.1 Model Derivation

In order to derive the aggregate distribution associated with a multinomial
choice process at the individual level and Dirichlet heterogeneity, we must
solve the following integral:
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P (X = x) =
∫ 1

0

∫ 1−p1

0
· · ·

∫ 1−∑k−2
j=1 pj

0

(
n

x1, . . . , xk

)k−1∏
j=1

p
xj

j

1 −
k−1∑
j=1

pj

n−∑k−1
j=1 xj

× Γ(S)∏k
j=1 Γ(aj)

k−1∏
j=1

p
aj−1
j

1 −
k−1∑
j=1

pj

ak−1

dpk−1 · · · dp2 dp1

This is done in the following manner:

1. Combine terms and move all non-pj terms to the left of the integral
signs. This gives us

P (X = x) =
( n

x1, . . . , xk

) Γ(S)∏k
j=1 Γ(aj)

×

∫ 1

0

∫ 1−p1

0
· · ·

∫ 1−∑k−2
j=1 pj

0


k−1∏

j=1

p
aj+xj−1
j





1 −

k−1∑
j=1

pj




ak+n−(
∑k−1

j=1 xj)−1

dpk−1 · · · dp2 dp1

2. We therefore have to solve the definite integral

∫ 1

0

∫ 1−p1

0
· · ·

∫ 1−∑k−2
j−1 pj

0


k−1∏

j=1

p
aj+xj−1
j





1 −

k−1∑
j=1

pj




ak+n−(
∑k−1

j=1 xj)−1

dpk−1 · · · dp2 dp1

The “trick” is to transform the terms to the right of the integral sign
into a known pdf.

3. Looking closely at this, we see that its structure mirrors the density of
the Dirichlet distribution with parameters aj + xj (j = 1, . . . , k); all
that is missing is a Γ(S + n)/

∏k
j=1 Γ(aj + xj) term. We can therefore

write our expression for P (X = x) as

P (X = x) =
(

n

x1, . . . , xk

)
Γ(S)∏k

j=1 Γ(aj)

∏k
j=1 Γ(aj + xj)
Γ(S + n)

×
∫ 1

0

∫ 1−p1

0
· · ·

∫ 1−∑k−2
j=1 pj

0

Γ(S + n)∏k
j=1 Γ(aj + xj)

×
(

k−1∏
j=1

p
aj+xj−1
j

)(
1−

k−1∑
j=1

pj

)ak+(n−∑k−1
j=1 xj)−1

dpk−1 · · · dp2 dp1
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4. As the integrand is a Dirichlet pdf, the definite integral, by definition,
equals 1, and we therefore write the equation as

P (X = x) =
(

n

x1, . . . , xk

)
Γ(S)∏k

j=1 Γ(aj)

∏k
j=1 Γ(aj + xj)
Γ(S + n)

This is called the Dirichlet-multinomial (or DM) model.

6.2 Mean and Variance of the Dirichlet-Multinomial

The mean of the DM can easily be derived by conditioning—see section 4.2.
To do so, we evaluate

E(X) = Ep
[
E(X|p)]

where Ep[·] denotes expectation with respect to the distribution of the vec-
tor p. Conditional on p, X is distributed multinomial, and the mean of the
multinomial distribution is np; therefore E(X) = E(np). Since n is a scalar
constant, this is equivalent to E(X) = nE(p). As the latent vector p has a
Dirichlet distribution, and we know that the mean of the Dirichlet distribu-
tion is E(X) = a/S, with E(Xj) = aj/S. It follows that the mean of the
Dirichlet-multinomial is

E(X) =
n

S
a , with E(Xj) =

naj

S

The derivation of the variance-covariance of the Dirichlet-multinomial is
more complex and we therefore present the result without derivation:

var(Xj) =
naj(S − aj)(S + n)

S2(S + 1)

cov(Xj, Xj′) =
−najaj′(S + n)

S2(S + 1)

This can be re-written as:

cov(Xj, Xj′) = n
aj

S

(
δj=j′ − aj′

S

)(S + n

S + 1

)
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where δj=j′ is the Kronecker delta , defined as

δj=j′ =

{
1 if j = j′

0 otherwise

Let p̄ be the mean vector of the Dirichlet distribution with jth element
p̄j = aj/S. We therefore have

cov(Xj, Xj′) = np̄j(δj=j′ − p̄j′)
(
S + n

S + 1

)
and can therefore express the variance-covariance of the Dirichlet-multinomial
in matrix form as

var(X) =
(
S + n

S + 1

)
n[Diag(p̄)− p̄p̄′]

6.3 Estimating Model Parameters

In order to apply the DM model, we must first develop estimates of its
parameter vector a, from the given sample data. Two methods are at the
modeler’s disposal: maximum likelihood and method of moments. Let xi

be the vector of purchases made by household i (i = 1, . . . , N) across the k
brands, and ni the number of category purchases (ni =

∑k
j=1 xij); xij denotes

the number of times outcome j occurs in ni independent trials.

Approach 1: Maximum Likelihood

By definition likelihood function is the joint density of the observed data.
Assuming the observations are independent, this is the product of the DM
probabilities for each xi. The log-likelihood function is therefore

LL(a | data) =
N∑

i=1

ln
[
P (X = xi|ni, a)

]
Using standard numerical optimization software, we find the value of the
parameter vector a that maximizes this log-likelihood function; this is the
maximum likelihood estimate of a.
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Approach 2: Method of Moments

For the case of ni = n ∀ i, another approach to estimating the parameters of
the DM model is the method of moments.

Let us denote the sample mean vector by x̄, the jth element of which is

x̄j =
1
N

N∑
i=1

xij , j = 1, . . . , k

Equating the sample mean vector with its population counterpart, we have

x̄j =
naj

S
(9)

Given an estimate of S, it follows that

âj =
Ŝx̄j

n
, j = 1, . . . , k

We therefore need an estimate of S; there are several means of doing this,
two of which are:

• Let us denote the sample variance of Xj by s2
j . Equating this with its

population counterpart, we have

s2
j =

naj(S − aj)(S + n)
S2(S + 1)

(10)

From (9) we have x̄j/n = aj/S. Substituting this into (10), we have

s2
j =

nx̄j(n − x̄j)(S + n)
n(S + 1)

Solving this for S, we get

Ŝ =
n
[
x̄j(n − x̄j)− s2

j

]
ns2

j − x̄j(n − x̄j)

• Recall that the variance-covariance of the Dirichlet-multinomial is

var(X) =
(
S + n

S + 1

)
n[Diag(p̄)− p̄p̄′]
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where p̄ is the mean vector of the Dirichlet distribution with jth ele-
ment p̄j = aj/S. Looking closely at this expression, we see that it is
(S + n)/(S + 1) × the variance-covariance matrix of the multinomial
distribution computed with p̄. This leads to the following procedure
for developing an estimate of S:

1. Let Σ̂DM be the sample variance-covariance matrix generated
using the observed data, and Σ̂M the multinomial variance-covari-
ance matrix generated using x̄/n as our estimate of p̄.

2. Dropping the kth row and column of each matrix, we get Σ̂
′
DM

and Σ̂
′
M ; both matrices are of order (k − 1) × (k − 1). (We do

this as the rank of both Σ̂DM and Σ̂M is k−1.) Recall from basic
matrix algebra that, for scalar b and n×n matrixA, |bA| = bn|A|,
where | · | denotes the determinant. It follows that

|Σ̂′
DM | =

(
S + n

S + 1

)k−1

|Σ̂′
M |

Let

γ =
|Σ̂′

DM |
|Σ̂′

M |

3. Solving

γ =
(
S + n

S + 1

)k−1

for S, we get

Ŝ =
n − k−1

√
γ

k−1
√
γ − 1

The second approach is probably more desirable as it develops an estimate
of S from all the variances and covariances, as opposed to the variance of
only one variable— for any j = 1, . . . , k.
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7 Empirical Bayes Methods

At the heart of any probability modeling effort is the assumption that the
observed individual-level behavior x is the realization of a random process
with density f(x|θ), which has unknown parameter(s) θ. By assuming a
particular distribution for θ, we are able to derive an aggregate-level model
without specific knowledge of any given individual’s latent parameter(s), and
therefore solve the management problem motivating the modeling exercise.

In many cases, however, we are interested in estimating a given indi-
vidual’s latent “trait” (i.e., θ). This may be because we wish to rank the
individuals on the basis of their true underlying behavioral tendency or be-
cause we wish to forecast their behavior in a future period. In either case,
the challenge is to make interferences regarding θ, given the individual’s ob-
served behavior x. In order to address this problem, we make use of Bayes
theorem.

Definitions

• The prior distribution g(θ) represents our opinion about the possible
values θ can take on, prior to collecting any information about the
specific individual.

• The model distribution f(x|θ) is the density function for the ob-
served data, given a specific value of the latent parameter θ. (Note
that this is the same as the likelihood function L(θ|x) and consequently
many textbooks on Bayesian methods use this alternative terminology
and notation.)

• The marginal distribution of x is given by

f(x) =
∫

f(x|θ)g(θ) dθ

• The posterior distribution g(θ|x) is the conditional distribution of
θ, given the observed data x. It represents our updated opinion about
the possible values θ can take on, now that we have some information
x about the specific individual.
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According to Bayes theorem, the posterior distribution is computed as

g(θ|x) = f(x|θ)g(θ)∫
f(x|θ)g(θ) dθ

=
f(x|θ)g(θ)

f(x)

This is sometimes expressed as posterior ∝ likelihood × prior.

In applying Bayes theorem to the types of problems noted above, we use
the mixing distribution, which captures the heterogeneity in the individual-
level latent variables, as the prior distribution. Using the estimated param-
eters of this mixing distribution, along with the observed data x, we arrive
at the posterior distribution using the above formula.

Formally, this approach is known as parametric empirical Bayes:

• parametric because we specific a parametric distribution (e.g, gamma,
beta) for the prior. (Alternatively, some modelers use a nonparametric
prior distribution, but this is beyond the scope of this note.)

• empirical because we estimate the parameters of this prior distribution
using the sample data, as opposed to using analyst-specified values as
in the case of “traditional” Bayesian analysis.

In applied marketing settings, we very rarely focus on the posterior dis-
tribution as an end result. Rather we may:

1. Compute the predictive distribution f(y|x), which is the distribu-
tion of a new behavior y given the observed data x. For example, what
is the distribution of purchases in a future period for an individual who
made x purchases in the current period?

2. Compute the conditional expectation of the future behavior, given
the observed data, i.e., E(y|x). (This is the mean of the predictive
distribution.)

3. Compute the conditional expectation of the latent variable θ, given
the observed data, i.e., E(θ|x).
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7.1 The NBD Model

Consider a behavior (e.g., product purchasing) that can be characterized
by the NBD model (i.e., Poisson counts at the individual-level with gamma
heterogeneity). A model has been calibrated using data from Period 1 (of
unit length) and we are interested in predicting individual-level behavior in
a non-overlapping Period 2 (also of unit length). Let the random variables
X1 and X2 be the counts for Periods 1 and 2, respectively.

• If we knew nothing about an individual’s purchasing in Period 1, what
would be our best guess as to the distribution of the individual’s buying
rate, λ? Our best guess would be that the individual’s buying rate
is distributed according to the population gamma distribution with
parameters r and α. Consequently, E(λ) = r/α and therefore E(X2) =
r/α.

• If we know that the individual made x purchases in Period 1, we may be
tempted to say that this individual will make x purchases in Period 2;
i.e., E(X2|X1 = x) = x. However, this does not take into account the
assumed stochastic nature of buying behavior. Moreover, it provides
no insight into the distribution of the individual’s buying rate.

Therefore, our objective is to derive the distribution of the individual’s buy-
ing rate, λ, taking into consideration the fact that he purchased x units in
Period 1.

Applying Bayes theorem, we have

g(λ|x) =

P (X1=x|λ)︷ ︸︸ ︷
λxe−λ

x!

g(λ|r,α)︷ ︸︸ ︷
αrλr−1e−αλ

Γ(r)
Γ(r + x)
Γ(r)x!

(
α

α+ 1

)r ( 1
α+ 1

)x

︸ ︷︷ ︸
P (X1=x)

=
(α+ 1)r+xλr+x−1e−λ(α+1

Γ(r + x)
= gamma(r + x, α + 1)
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That is, the updated distribution of λ, assuming X1 = x and a gamma prior
distribution, is itself gamma with parameters r + x and α+ 1.

It follows that the distribution of X2, conditional on X1 = x1 is

P (X2|X1 = x1) =
Γ(r + x1 + x2)
Γ(r + x1)x2!

(
α+ 1
α+ 2

)r+x1
(

1
α+ 2

)x2

Also note that the expected value of X2, conditioned on the fact that
X1 = x (i.e., the conditional expectation of X2) is

E(X2|X1 = x) =
r + x

α+ 1

This can be written as

E(X2|X1 = x) =
(

α

α+ 1

)
r

α
+
(

1
α+ 1

)
x

which implies that the expectation of future behavior, conditional on ob-
served behavior, is a weighted average of the observed value (x) and the pop-
ulation mean (r/α). Therefore, the “regression to the mean” phenomenon
applies to NBD-based conditional expectations. We note that the larger the
value of α, the greater the regression to the mean effect.

7.2 The Beta-Binomial Model

Consider a phenomenon (e.g., brand choice) that can be characterized by
the BB model (i.e., a binomial “choice” process at the individual-level with
beta heterogeneity). A model has been calibrated using data of the form
(xi, ni), i = 1, . . . , N , where xi is the number of times individual i chooses
the focal brand from a total of ni purchasing occasions. We are interested in
estimating the individual’s underlying choice probability, p.

• If we knew nothing about an individual’s choice behavior, what would
be our best guess as to the distribution of the individual’s choice proba-
bility, p? Our best guess would be that p is distributed according to the
population beta distribution with parameters α and β. Consequently,
E(p) = α/(α+ β).
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• If we know that the individual chose the focal brand x out of n times,
we may be tempted to say that our best guess of this individual’s
choice probability is x/n. However, this does not take into account the
assumed stochastic nature of the choice process. Moreover, it provides
no insight into the distribution of the individual’s choice probability.

Therefore, our objective is to derive the distribution of the individual’s choice
probability, p, taking into consideration the fact that he chose the brand of
interest x out of n times.

Applying Bayes theorem, we have

g(p|x, n) =

P (X=x|n,p)︷ ︸︸ ︷(
n

x

)
px(1− p)n−x

g(p|α,β)︷ ︸︸ ︷
1

B(α, β)
pα−1(1− p)β−1(

n

x

)
B(α+ x, β + n − x)

B(α, β)︸ ︷︷ ︸
P (X=x|n)

=
1

B(α+ x, β + n − x)
pα+x−1(1− p)β+n−x−1

= beta(α+ x, β + n − x)

That is, the updated distribution of p, given x and n and a beta prior dis-
tribution, is itself beta with parameters α+ x and β + n− x. Therefore, the
expected value of p, conditional on x and n (i.e., the conditional expectation
of p) is

E(p|x, n) = α+ x

α+ β + n

This can be written as

E(p|x, n) =
(

α+ β

α+ β + n

)
α

α+ β
+
(

n

α+ β + n

)
x

n

This is a weighted average of the predictions based on the observed choice
probability (x/n) and the population mean (α/(α+β)). The larger the value
of α+ β, relative to n, the greater the regression to the mean effect.

30



It follows that the distribution of X∗, the number of times the brand is
chosen out of n∗ purchase occasions, conditional on X = x is

P (X∗ = x∗|X = x, n, n∗) =
(
n∗

x∗

)
B(α+ x+ x∗, β + n − x+ n∗ − x∗)

B(α+ x, β + n − x)

The expected value of X∗, conditional on x and n (i.e., the conditional
expectation of X∗) is

E(X∗|x, n, n∗) = n∗ α+ x

α+ β + n

7.3 The Dirichlet-Multinomial Model

Consider a phenomenon (e.g., brand choice) that can be characterized by
the Dirichlet-multinomial model (i.e., a multinomial “choice” process at the
individual-level with Dirichlet heterogeneity). A model has been calibrated
using data of the form (xi, ni), i = 1, . . . , N , where xi is individual i’s vec-
tor of purchases across k brands and ni =

∑k
j=1 xij is the total number of

purchase occasions for this individual. We are interested in estimating the
individual’s underlying choice probability vector, p.

• If we knew nothing about an individual’s choice behavior, what would
be our best guess as to the distribution of the individual’s choice prob-
ability vector, p? Our best guess would be that p is distributed ac-
cording to the population Dirichlet distribution with parameters aj,
j = 1, . . . , k and S =

∑k
j=1 aj. Consequently, E(pj) = aj/S.

• If we know the individual’s purchase vector, xi, we may be tempted to
say that our best guess of this individual’s choice probability vector is
xi/ni. However, this does not take into account the assumed stochastic
nature of the choice process. Moreover, it provides no insight into the
distribution of the individual’s choice probability vector.

Therefore, our objective is to derive the distribution of the individual’s choice
probability vector, p, taking into consideration his purchases given by x.

According to Bayes theorem, we have:

g(p|x) = P (X = x|n,p)g(p|a)
P (X = x|a, n)
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Substituting the relevant expressions, we have

g(p|x) =
(

n

x1, . . . , xk

)(
k−1∏
j=1

p
xj

j

)(
1−

k−1∑
j=1

pj

)n−∑k−1
j=1 xj

×

Γ(S)∏k
j=1 Γ(aj)

(
k−1∏
j=1

p
aj−1
j

)(
1−

k−1∑
j=1

pj

)ak−1 /
(

n

x1, . . . , xk

)
Γ(S)∏k

j=1 Γ(aj)

∏k
j=1 Γ(aj + xj)
Γ(S + n)

Simplifying the above expression, we get

g(p|x, n) = Γ(S + n)∏k
j=1 Γ(aj + xj)

(
k−1∏
j=1

p
aj+xj−1
j

)(
1−

k−1∑
j=1

pj

)ak+(n−∑k−1
j=1 xj)−1

= Dirichlet(a+ x)

That is, the updated distribution of p, given x and a Dirichlet prior distribu-
tion, is itself Dirichlet with parameter vector a+ x. Therefore, the expected
value of pj, conditional on x (i.e., the conditional expectation of pj) is

E(pj|x) = aj + xj

S + n

This can be written as

E(pj|x) =
(

S

S + n

)
aj

S
+
(

n

S + n

)
xj

n

This is a weighted average of the predictions based on the observed choice
probability (xj/n) and the population mean (aj/S). The larger the value of
S, relative to n, the greater the regression to the mean effect.
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