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Motivating Problems



Motivating Problem 1

1000 customers are acquired at the beginning of Year 1
with the following pattern of renewals:

ID Year1l Year 2 Year 3 Year 4 Year5

0001 1 1 0 0 0
0002 1 0 0 0 0
0003 1 1 1 0 0
0004 1 1 0 0 0
0005 1 1 1 1 1
0006 1 0 0 0 0
0998 1 0 0 0 0
0999 1 1 1 0 0
1000 1 0 0 0 0

1000 631 468 382 326

Motivating Problem 1

Year 1 Year 2 Year 3 Year 4 Year 5
| | | | |
1000 631 468 382 326
Assume:

- Each contract is annual, starting on January 1 and
expiring at 11:59pm on December 31

- An average net cashflow of $100/year, which is
“booked” at the beginning of the contract period

- A 10% discount rate



Motivating Problem 1

Qla: Assuming our current prospect pool has the same

Qlb:

P(still a customer)

characteristics of that from which these customers
were acquired, what is the maximum amount you
would be willing to spend to acquire a customer?

What is the expected residual value of this group of
326 customers at the end of Year 57

Spending on Customer Acquisition

Year 1 Year 2 Year 3 Year 4 Year 5

1.000 0.631 0.468 0.382 0.326

Net CF 5$100 ;$100 ;$100 5$100 5$100
N S N S DS S
1scount 11 (LDZ (LD (LA



Spending on Customer Acquisition

Standing at the beginning of Year 1, the discounted

expected value of a customer is

0.631 0.468
$100 + $100 x = + $100 x 1.1)2
0.382 0.326 _ §047

+ $100 X + $100 X
$100 1.1)? $100 (1.1)%
= We can justify spending up to $247 to acquire a

new customer (based on expected “profitability”

over the five year period).

What’s wrong with this analysis?



Spending on Customer Acquisition

Problem:

- We are ignoring any cashflow the customer could
possibly generate after Year 5.

- To get a true sense of (expected) customer lifetime
value, we need to know the probability that the
customer is still a customer in year 6, year 7, and so on.

Spending on Customer Acquisition

Solution:

- We know that 326/382 x 100% = 85.3% of the Year 4
customers renewed at the end of Year 4.

- Let us assume that this renewal rate will hold ad

infinitum.

P(still a customer in Year 6) = 0.326 x 0.853
=0.278

P (still a customer in Year 7) = 0.326 x (0.853)°
= 0.237
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Spending on Customer Acquisition

Standing at the beginning of Year 1, the discounted
expected value of a customer is

0.631 0.468 0.382
11 + $100 x (11)2 + $100 x (1.1)3

0.326 0.326 x 0.853
(1.1)? + $100 x 11
0.326 x (0.853)2

(1.1)6

$100 + $100 x

+ $100 x

+ $100 x +---=8324

= By looking beyond Year 5, we can justify
spending up an additional $77 to acquire a new
customer.
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Residual Value of the Customer Base

Q1b: What is the expected residual value of this group of
326 customers at the end of Year 5?

Year 5 Year6 Year7 Year$8

Y

(1.1) | (1.1)2

! /| | ! !
P (still a customer) i i 0.853 i(0.853)2 i (0.853)3i
Net CF '$100 18100 18100

discount i i 1 i ! i L i
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Residual Value of the Customer Base

Standing at the end of Year 5, the discounted expected
(residual) value of a Year 5 customer is

0.8532
+

$100 x 0.853 + $100 x 11

(e¢]

Z 0.853¢
(1.1)t-1

= $100 x

t=1

= $381

—> The expected residual value of the group of
customers at the end of Year 5 is 326 x $381
= $124,206.
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What’s wrong with this analysis?
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Motivating Problem 1

- In order to compute the probability that someone is
still a customer in Years 6, 7, ..., we have assumed a
constant retention rate from Year 4 onwards.

- However retention rates are increasing over time:

631 468

Year 1: 1000 = (0.631 Year 2: 631 = 0.742
382 326
Year 3: 168 0.816 Year 4: 382 0.853

= We need a tool for forecasting survival that captures
the phenomenon of increasing retention rates.
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Motivating Problem 2

- A charity located in the Midwestern United States that

is funded in large part by donations from individual
supporters.

- We have data for the 11,104 people first-time
supporters acquired in 1995.

Assume:

- The value of the average donation is $50 (which is
received at the beginning of the year).

- A 10% discount rate.

16



Q2a: Assuming our current prospect pool has the same

Q2b:

ID

1995 1996 1997 1998 1999 2000 2001

100001
100002
100003
100004
100005
100006
100007
100008
100009
100010

111102
111103
111104

I e T S T T S ==y
S = = = = O O O O O
O = = O = = = O O O

1 0 0

S = = == = OO O O O

0

SO B = O O = = O O O

—_

S = = = = OO = O O O

0

S O = O O = = O O O

0

characteristics of that from which these donors were
acquired, what is the maximum amount you would
spend to acquire a new donor?

Given their donation behavior to date, in how many of
the subsequent five years can we expect a supporter to

11104 5652 4674 4019 3552 3555 3163
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make a donation?

What about 100004 (who made repeat donations
in four years with the last occurring in 2001)
versus 100009 (who made repeat donations in

Motivating Problem 2

five years with the last occurring in 2000)?

18



Spending on Customer Acquisition

1995 1996 1997 2001
| | | e R
| 5,652 1 4,674 ' 3,163
P(donate) 1 1.0 57504 1 11,104 - 11,104
Net CF 1850  1$50 1850 850
di | . 1 0 1 1
19

Spending on Customer Acquisition

The discounted expected value of a donor is

0.509 0.421
11 30X

0.362 0.320
a1 T30 g

0.320 0.285
a1y F30X g6

$50 + $50 x

+ $50 x

+ $50 X = $133

= We can justify spending up to $133 to acquire
a new customer (based on expected donation
behavior over the seven year period).

20



What’s wrong with this analysis?

21

Motivating Problem 2

- We are ignoring any donations we could receive from
the donor beyond Year 7.

- What about Q2b?

In how many of the subsequent five years can we
expect a supporter such as 100004, who made
repeat donations in four years with the last
occurring in 2001, to make a donation? ...

— We need a model of donation incidence that can be

used to predict future behavior, both in the
aggregate and conditional on past behavior.

22



Customer Lifetime Value

Customer lifetime value is the present value of the future
cash flows associated with the customer.

- A forward-looking concept

- Not to be confused with (historic) customer
profitability

Two key questions:
- How long will the customer remain “alive”?

- What is the net cashflow per period while “alive”?

23

Q: How long will the customer remain “alive”?

A: It depends on the business setting ...
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Classifying Business Settings

Consider the following two statements regarding the size of a
company’s customer base:

- Based on numbers presented in a news release that reported
Vodafone Group Plc’s results for the year ended 31 March
2014, we see that Vodafone UK had 11.7 million “pay
monthly” customers at the end of that period.

- In his “Q2 2014 Earnings Conference Call” the CFO of
Amazon made the comment that “[a]ctive customer
accounts exceeded 250 million,” where customers are
considered active when they have placed an order during
the preceding twelve-month period.

25

Classifying Business Settings

- Itis important to distinguish between contractual and
noncontractual settings:

- In a contractual setting, we observe the time at which a
customer ended their relationship with the firm.

- In a noncontractual setting, the time at which a customer
“dies” is unobserved (i.e., attrition is latent).

- The challenge of noncontractual markets:

How do we differentiate between those customers
who have ended their relationship with the firm
versus those who are simply in the midst of a long
hiatus between transactions?

26



Motivating Problem 1

ID Year1l Year 2 Year 3 Year4 Year5

0001 1 1 0 0 0
0002 1 0 0 0 0
0003 1 1 1 0 0
0004 1 1 0 0 0
0005 1 1 1 1 1
0006 1 0 0 0 0
0998 0 0 0 0
0999 1 1 0 0
1000 1 0 0 0 0

1000 631 468 382 326
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Motivating Problem 2

ID 1995 1996 1997 1998 1999 2000 2001

100001 1 0 0 0 0 0 0
100002 1 0 0 0 0 0 0
100003 1 0 0 0 0 0 0
100004 1 0 1 0 1 1 1
100005 1 0 1 1 1 0 1
100006 1 1 1 1 0 1 0
100007 1 1 0 1 0 1 0
100008 1 1 1 1 1 1 1
100009 1 1 1 1 1 1 0
111102 1 1 1 1 1 1
111103 1 0 1 1 0 1 1

111104 1 0 0 0 0 0 0

11104 5652 4674 4019 3552 3555 3163
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Contractual Settings

29

Notation and Terminology

Year 1 Year 2 Year 3 Year 4 Year 5

1000 '°' 631

t 2 t=3 t=4 t=5

468 382 326

The survivor function S(t) is the proportion of the
cohort that continue as a customer beyond t.

S0) =7
S(1) =7
S(2) =7

30



Notation and Terminology

Year 1 Year 2 Year 3 Year 4 Year 5

1000 7' 631

t 2 t=3 t=4 t

468 382 326

The retention rate is the ratio of customers retained
to the number at risk.

r(l)="7
r(2) =7
| | S
For survivor function S(t), r(t) = —S(t 1)

31

Modelling Objective

We want to derive a mathematical expression for S(t),
which can then be used to generate the desired forecasts.

100 A

80

60 -

% Surviving

40 -~

20

0 I I I I I I I I I I I I I

1 2 3 4 5 6 7 8 9 10 11 12 13

Tenure (years)
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The Phenomenon of Retention Rates

At the cohort level, we (almost) always observe increasing
retention rates (and a flattening survival curve).
Renewal rates at regional magazines vary; generally 30% of
subscribers renew at the end of their original subscription,

but that figure jumps to 50% for second-time renewals and all
the way to 75% for longtime readers.

Fielding, Michael (2005), “Get Circulation Going: DM Redesign Increases Renewal
Rates for Magazines,” Marketing News, September 1, 9-10.

New subscribers are actually more likely to cancel their
subscriptions than older subscribers, and therefore, an
increase in subscriber age helps overall reductions in churn.

Netflix (10-K for the fiscal year ended December 31, 2005)

33

Vodafone Germany
Quarterly Annualized Churn Rate (%)

20 \/\/____\

15 -~

10 -~

0 T T T T T T T T
Q202/03 Q302/03 Q402/03 Q103/04 Q203/04 Q303/04 Q403/04 Q1 04/05

Source: Vodafone Germany “Vodafone Analyst & Investor Day” presentation (2004-09-27)
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# Customers

I am happy to report that 41% of new members who
joined in 2011 renewed their membership in 2012,
and that ION has an overall retention of 78%.

ION Newsletter, Winter 2011-2012.
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Cohort-level vs. Aggregate Numbers
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Cohort-level vs. Aggregate Numbers

Yr01 Yr02 Yr0O3 Yr04 YrO5 Yr06 YrO7 Yr0O8 Yr09 Yrl10 VYr1l VYr12 Yr13 Yr1l4 Yr1l5 Yrl6 Yrl7 Yrl1l8 Yr19 Yr20
Yr01 1000 629 471 382 324 283 252 228 208 192 179 167 157 148 140 133 127 122 117 112
Yr02 1000 629 471 382 324 283 252 228 208 192 179 167 157 148 140 133 127 122 117
Yr03 1000 629 471 382 324 283 252 228 208 192 179 167 157 148 140 133 127 122
Yr 04 1000 629 471 382 324 283 252 228 208 192 179 167 157 148 140 133 127
Yr 05 1000 629 471 382 324 283 252 228 208 192 179 167 157 148 140 133
Yr 06 1000 629 471 382 324 283 252 228 208 192 179 167 157 148 140
Yr 07 1000 629 471 382 324 283 252 228 208 192 179 167 157 148
Yr 08 1000 629 471 382 324 283 252 228 208 192 179 167 157
Yr 09 1000 629 471 382 324 283 252 228 208 192 179 167
Yr 10 1000 629 471 382 324 283 252 228 208 192 179
Yri11 1000 629 471 382 324 283 252 228 208 192
Yri12 1000 629 471 382 324 283 252 228 208
Yr 13 1000 629 471 382 324 283 252 228
Yr 14 1000 629 471 382 324 283 252
Yr 15 1000 629 471 382 324 283
Yr 16 1000 629 471 382 324
Yri17 1000 629 471 382
Yr 18 1000 629 471
Yr 19 1000 629
Yr 20 1000
Total 1000 1629 2100 2482 2806 3089 3341 3569 3777 3969 4148 4315 4472 4620 4760 4893 5020 5142 5259 5371
37
Cohort-level vs. Aggregate Numbers

YrO01l Yr02 Yr03 Yr04 Yr05 Yr06 Yr07 Yr08 Yr09 Yrl10 Yr11l Yr12 Yr13 Yr14 Yr15 Yr16 Yr17 Yr18 Yr19 Yr20
Yr 01 - 0.629 0.749 0.811 0.848 0.873 0.890 0905 0.912 (.923 0.932 0.933 0.940 0943 0.946 0.950 0.955 0.961 0.959 0.957
Yr02 - 0.629 0.749 0.811 0.848 0.873 0.89 0.905 0912 0923 0932 0933 094 0943 0946 095 0.955 0.961 0.959
Yr03 - 0.629 0.749 0.811 0.848 0.873 0.89 0.905 (0.912 0.923 0932 0.933 094 0943 0946 0.95 0.955 0.961
Yr 04 - 0.629 0.749 (0.811 0.848 0.873 0.89 0.905 0912 0923 (0.932 0933 (.94 0.943 0.946 0.95 0.955
Yr 05 - 0.629 0.749 0.811 0.848 0.873 0.89 0.905 0.912 0923 0.932 0.933 094 0943 0.946 0.95
Yr 06 - 0.629 0.749 0.811 0.848 0.873 0.89 0.905 0.912 0.923 0.932 0.933 0.94 0.943 0.946
Yr 07 - 0.629 0.749 0.811 0.848 0.873 0.89 0905 (0.912 0.923 0932 0.933 0.94 0943
Yr 08 - 0.629 0.749 0.811 0.848 0.873 0.89 0.905 0.912 0.923 0.932 0.933 0.94
Yr 09 - 0.629 0.749 0.811 0.848 0.873 0.89 0.905 0.912 0923 0.932 0.933
Yr 10 - 0.629 0.749 0.811 0.848 0.873 0.89 0905 0.912 0.923 0.932
Yri11l - 0.629 0.749 0.811 0.848 0.873 0.89 0.905 0.912 0.923
Yri2 - 0.629 0.749 0.811 0.848 0.873 0.89 0.905 0.912
Yri3 - 0.629 0.749 0.811 0.848 0.873 0.89 0.905
Yr 14 - 0.629 0.749 0.811 0.848 0.873 0.89
Yr 15 - 0.629 0.749 0.811 0.848 0.873
Yr 16 - 0.629 0.749 0.811 0.848
Yr17 - 0.629 0.749 0.811
Yr 18 - 0.629 0.749
Yr19 - 0.629

Yr 20 -
Aggregate - 0.629 0.675 0.706 0.728 0.744 0.758 0.769 0.778 0.786 0.793 0.799 0.805 0.809 0.814 0.818 0.822 0.825 (.828 0.831
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Cohort-level vs. Aggregate Numbers
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39

Why Do Retention Rates Increase Over Time?

Individual-level time dynamics:

- increasing loyalty as the customer gains more
experience with the firm, and/or

- increasing switching costs with the passage of
time.

VS.

A sorting effect in a heterogeneous population.

40



A Discrete-Time Model for Contract Duration

i. An individual remains a customer of the firm with
constant retention probability 1 — 0

— the duration of the customer’s relationship with
the firm is characterized by the geometric
distribution:

St|)=1-0)t, t=1,2,3,...

ii. Heterogeneity in 0 is captured by a beta distribution.

41

The Beta Distribution

- The beta distribution is a flexible (and mathematically
convenient) two-parameter distribution bounded
between 0 and 1:

0y-1(1 — 0)°-1

B(y,6)

g0ly,o0) =

where y, 6 > 0 and B(y, 0) is the beta function.

- The mean of the beta distribution is

I 4
E(®)_y+5'

42



INlustrative Beta Distributions

3
1
1
1
1
1
2 i
\|
g(0) \
1__..
0
0.0
0 0
y =5.0,6 =5.0 y=1.5,6 =0.5
— — — y=1.0,6=1.0 — — — y=05,6=15
——————— y =0.5,0 =0.5 ------- y=2.0,0=4.0
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Five General Shapes of the Beta Distribution
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The Beta Function

- The beta function B(y, ¢) is defined by the integral

1
B(y,dS) = J tY1(1-t)°'dt, y > 0,6 > 0,
0

and can be expressed in terms of gamma functions:

I'(y)I'(0)

By.o) =1+

- The gamma function I'(y) is a generalized factorial,
which has the recursive property I'(y + 1) = yI'(y).
SinceI'(0) = 1,I'(n) = (n — 1)! for positive integer n.

45

Numerical Evaluation of the Beta Function

- Not all computing environments have a beta function
(or even a gamma function).

- However, we typically have a function that evaluates
In(I'(-)), e.g., gammaln.

- In Excel,

I'(y) = exp(gammaln(y))
B(y,0) = exp(gammaln(y)+gammaln (o)
-gammaln(y+96))

46



A Discrete-Time Model for Contract Duration
- The probability that a customer cancels their contract
in period ¢
1
P(T=t1y,8) = [ P(T=t10)g(01y,6)d0
0

_B(y+1,0+t-1)
N B(y, ) ’

t=1,2,...
- The aggregate survivor function is

1
ﬂﬂ%&=h5@wmeﬁM9

_ B(y,6 +1)
- B(y,6)

t=1,2,...

47

A Discrete-Time Model for Contract Duration

- The (aggregate) retention rate is given by

_S(t)

- S(t-1)

o o+t-1
Cy+6+t-1°

v (t)

- This is an increasing function of time, even though the
underlying (unobserved) retention rates are constant at
the individual-level.

48



A Discrete-Time Model for Contract Duration

We can compute BG probabilities using the following
forward-recursion formula from P(T = 1):

y+0 t=1
P(T=tly,0) = -
O+t—2
gy+6+t—1me_t_D t =23,

49

A Discrete-Time Model for Contract Duration

- The relationship between v (t) and S(f) implies that,
given knowledge of v (t), we can compute S(f) using
the forward recursion:

1 ift=0
S(t) =
rt)xSit-1) ift=1,2,3,...

- We can compute the BG survivor function using the
following forward-recursion formula from S(0):

1 ift=0
S(tly,d) = S+t—-1
y+o+t-1

xSt-1) ift=1,2,3,...

50



Estimating Model Parameters

A | B | ¢ | D | E F
1 |gamma 1.000
2 |delta 1.000
3 |LL -1454.0
4
5 t # Cust. # Lost P(T=t) S(t)
6 0 1000 1.0000
7 1 =B1/(B1+B2) [—= 0.5000 0.5000 -255.77
8 2 468 163 0.1667 0.3333 -292.06
9 3 382 ,xs/nnm% 0.2500 -213.70
10 =D7*(SBS2+A8-2)/(SBS1+SBS2+A8-1) ) 2000 -167.76
11 -524.68

51

Estimated Distribution of Churn Probabilities

g(0)

3_

0.00 0.25 0.50 0.75

N ——

y =0.764,06 = 1.296,E(0Q) = 0.371

52
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Back to Motivating Problem 1

Year 1 Year 2 Year 3 Year 4 Year 5

Qla:

Qlb:

1000 631 468 382 326

Assuming our current prospect pool has the same
characteristics of that from which these customers
were acquired, what is the maximum amount you
would be willing to spend to acquire a customer?

What is the expected residual value of this group of
326 customers at the end of Year 57

53

Motivating Problem 1 (Q1l1a)

Year 1 Year 2 Year n
|

[
t=0 t

| | |
= =2 t=n-1 t
P(still a customer): S(0) . S(1) . CS(n—-1) |
Net CFi v(0) i v(1) i i vin-1) i
discount | 1 : 1 : : 1 :
I I (1+d) | I (1+d)n—1 1
= v (t)S(t)
E(CLV) =
(CLV) g() (1+d)t
o = S(t)
-V EO (1+d)t



Motivating Problem 1 (Q1la)

A B | c [ o | e | F | @
1 |gamma 0.764 E(CLV) $362
2 |delta 1.296 ~
3 |d 0.1 =B4*SUMPRODUCT(D7:D106,F7:F106)
4 |vbar $100
5
6 Year t r(t) S(t) disc.
7 1 0 1.0000 1.0000
8 2 1 0.6292 0.6292 0.9091
9 /)/ n 7504 N /4721 0.8264 \
10 4 =(5BS2+B8-1)/(5BS$1+5BS$2+B8-1) =1/(1+$B$3)7B8
11 5 4 0.8491 0.3255 U.6330
12 6 5 0.8740 0.2845 0.6209
13 7 6 0.8918 0.2537 0.5645
14 8 7 0.9052 0.2296 0.5132
15 9 8 0.9157 0.21( _D13*C14 0.4665
16 10 9 0.9241 0.19 0.4241
17 11 10 0.9309 0.1809 0.3855
105] 99 98 09923 00342 00001 |
106 100 99 0.9924 0.0339 0.0001
55

Motivating Problem 1 (Q1b)

Standing at the end of Year n, what is the expected
residual lifetime value of a customer?

Year n Year n + 1 Year n + 2
__ | | |
fone
P (still a customer) S| T>n-1) 'Sm+1|T>n-1)!
Net CF : v(n) . vin+1) :
discount : 1 : I I
l l (1+d) I
S v)SA|IT>n—-1)
E(RLV |n — 1 renewals) =
(RLV | wals) gn VI
o0 t .
_p 3 SWistn-1)
S (L+dtn

56



Technical Aside

S(t|T >mn—1) is the probability the customer survives
beyond t given they have survived beyond n — 1, t = n,
n+l,n+2,....

St|T>n-1)=rn)xr(n+1) x---xr(t)
i=t

= 1r@

i=t i=n—1

=[lr@/ [] @

i=1 i=1

=S({)/S(n—-1)

(We can also derive this result using Bayes’ theorem.)

57

Motivating Problem 1 (Q1b)

A [ B ] < T o J e 1 F | @

1 |gamma 0.764 E(RLV) $568
| 2 |delta 1.296 ~
3 g 0.1 ‘ =B4*SUMPRODUCT(E12:E106,F12:F106) ‘
Iv bar $100
ER Given 4 renewals

6 Year t r(t) S(t|t>4) disc.
| 7] 1 0
8| 2 1 06292
Ea 3 2 0.7504
10} 4 3 08119

11 5 4 08491
12 6 5 0.8740 0.8740  1.0000
13 7 6  0.8918 0.7794  0.9091
[ 14] 8 7 o.9osmﬁ 0.7056  0.8264 \
| 15 | 9 8 0915 0.6461  0.7513
16| 10 9 09241 ‘ =1/(1+$B$3)7(B13-5) |
17 11 10 0.9309 05558 U0.6209

105 99 98 09923 | 0.1050  0.0001
106 100 99 0.9924 0.1042  0.0001

=  expected residual value of the group of customers at the
end of Year 5 is 326 x $568 = $185,168.
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Comparing Approaches

Model Naive Underestimation

E(CLV) $362 $324 10%
E(RLV)  §568 $381 33%

- The naive estimates will always be lower than those of
the BG model.

- The driving factor is the degree of heterogeneity — see
Fader and Hardie (2010).

- The error is especially problematic when computing

E(RLV) (and therefore when valuing a customer base).

59

Validating the BG-based CLV Estimates

We actually have 12 years of renewal data.

- Examine the predictive performance of the underlying
BG model.

- Compare the naive and model-based estimates of

expected “lifetime” value against the actual average

values.

12

- S(t)
E(CLV) = $100 x go 1)

< ST > 4)
R(CLV) = $100 x > RIS

t=5

60



% Surviving

Retention Rate

Survival Curve Projection

100 ~

80 -~

40 -+

Tenure (years)
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Projecting Retention Rates
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Comparing Approaches

Infinite Horizon 12 Year Horizon

Model Naive Actual Model Naive
E(CLV) $362 $324 $331 $327 $314
E(RLV) $568 $381 $413 $395 §$331

- The model-based estimates are very close to the actual
numbers ...while making use of only four renewal
observations!

- The undervaluation associated with the naive model
becomes increasingly severe over a longer time
horizon.
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Expressions for E(CLV) /E(RLV)

Different points in time at which a customer’s discounted
expected (residual) lifetime value can be computed:

@ O © @
N | | e

|
|
0 1 2 n-1 n

(a) An “as-yet-to-be-acquired” customer
(b) A “just-acquired” customer
(c) At the beginning of their nth period as a customer

(d) At the end of their nth period as a customer
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Lessons Learnt

How to compute CLV in contractual settings

- Appreciating the need to project customer survival
beyond the observed data.

- Appreciating the distinction between the value of a
new versus existing customer.

How to use a probability model to forecast customer
survival.

- Understanding the phenomenon of retention rate
dynamics.
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Noncontractual Settings

67

Motivating Problem 2

ID 1995 1996 1997 1998 1999 2000 2001

100001 1 0 0 0 0 0 0
100002 1 0 0 0 0 0 0
100003 1 0 0 0 0 0 0
100004 1 0 1 0 1 1 1
100005 1 0 1 1 1 0 1
100006 1 1 1 1 0 1 0
100007 1 1 0 1 0 1 0
100008 1 1 1 1 1 1 1
100009 1 1 1 1 1 1 0
100010 1 0 0 0 0 0 0
111102 1 1 1 1 1 1 1
111103 1

111104 1 0 0 0 0 0 0

11104 5652 4674 4019 3552 3555 3163
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Motivating Problem 2

Q2a: Assuming our current prospect pool has the same
characteristics of that from which these donors were
acquired, what is the maximum amount you would
spend to acquire a new donor?

Q2b: Given their donation behavior to date, in how many of
the subsequent five years can we expect a supporter to
make a donation?

What about 100004 (who made repeat donations
in four years with the last occurring in 2001)
versus 100009 (who made repeat donations in
five years with the last occurring in 2000)?
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ID 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

100001 1 0 0 0 0 0 0 ? ? ? ? ?
100002 1 0 0 0 0 0 0 ? ? ? ? ?
100003 1 0 0 0 0 0 0 ? ? ? ? ?
100004 1 0 1 0 1 1 1 ? ? ? ? ?
100005 1 0 1 1 1 0 1 ? ? ? ? ?
100006 1 1 1 1 0 1 0 ? ? ? ? ?
100007 1 1 0 1 0 1 0 ? ? ? ? ?
100008 1 1 1 1 1 1 1 ? ? ? ? ?
100009 1 1 1 1 1 1 0 ? ? ? ? ?
100010 1 0 0 0 0 0 0 ? ? ? ? ?

111102 1 1 1 1 1 1 1 ? ? ? ? ?
111103 1 0 1 1 0 1 1 ? ? ? ? ?
111104 1 0 0 0 0 0 0 ? ? ? ? ?
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Notation

- A customer’s transaction history can be expressed as a

binary string, where y(t) = 1 if a transaction occurred
at or during the tth transaction opportunity, and 0
otherwise.

- Let the random variable

# Repeat Transactions

X(n) = > Y(t)

t=1

denote the number of transactions occurring across the
n transaction opportunities in the interval {1, 2,...,n}.
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Annual Repeat Transactions

6,000

5,000

4,000

3,000
—»=— Actual

2,000

1,000

0 T I T I T T T I T I I
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Year
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Repeat-buying in a Noncontractual Setting
The “leaky bucket” phenomenon:

A harsh reality for any marketer is that regardless
of how wonderful their product or service is, or
how creative their marketing activities are, the
customer base of any company can be viewed as a
leaky bucket whose contents are continually
dripping away. Customer needs and tastes change
as their personal circumstances change over time,
which leads them to stop purchasing from a given
firm or even stop buying in the product category all
together. In the end, they literally die.
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Repeat-buying in a Noncontractual Setting

# Transactions

Time
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Repeat-buying in a Noncontractual Setting

# Transactions

Time

“latent attrition”
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Modelling the Transaction Stream

A customer’s relationship with a firm has two phases: they
are “alive” for an unobserved period of time, then “dead.”

Transaction Process:

- While “alive,” a customer makes a transaction at any given
transaction opportunity following a “coin flip” process.

- Transaction probabilities vary across customers.
Latent Attrition Process:

- A “living” customer “dies” at the beginning of a transaction
opportunity following a “coin flip” process.

- “Death” probabilities vary across customers.
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Model Development

A customer’s relationship with a firm has two phases: they
are “alive” (A) then “dead” (D).

- While “alive,” the customer makes a transaction at any
given transaction opportunity with probability p:

P(Y(t) =1]|p,aliveatt) =p

- A “living” customer “dies” at the beginning of a
transaction opportunity with probability 0

= P(alive at t| 0) = P(AA...A|0) = (1 — 0)}
t
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Model Development

Consider the following transaction pattern:

1996 1997 1998 1999 2000 2001
1 0 0 1 0 0

- The customer must have been alive in 1999 (and
therefore in 1996-1998)

- Three scenarios give rise to no purchasing in 2000 and
2001

1996 1997 1998 1999 | 2000 2001
A A A A D D
A A A A A D
A A A A A A
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Model Development

We compute the probability of the transaction string
conditional on each scenario and multiply it by the
probability of that scenario:

£(100100 | p,0) =p(1 —p)(1 —p)p (1 — 0)*0

P(AAAADD)
+p(1-p)A-p)p(1-p) (1 -0)°0
Lﬁ_"
P(AAAAAD)
1-p)(1- 1-— 1-— 1-—06)5
+p( v)Y( p)p(l-p)(1-p)(1-0)
P(Y1=1,Y>=0,Y3=0,Y4=1) P(AAAAAA)

79

Model Development

- Bernoulli purchasing while alive = the order of a given
number of transactions (prior to the last observed
transaction) doesn’t matter. For example,

S (100100 | p,0) = f£(001100| p, 0) = £(010100 | p, O)

- Recency (time of last transaction, t,) and frequency
(number of transactions, x = 2?:1 vy (t)) are sufficient
summary statistics.

—=> We do not need the complete binary string
representation of a customer’s transaction
history.
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Summarizing Repeat Transaction Behavior

1996 1997 1998 1999 2000 2001 # Donors

~
2

1203
728
335
512
284
240
357
225
181
322
234
173
155
255
613
129
119

79
129
277

62 0 0 0 0 1091

63 0 0 0 0 0 3464

64 0 0 0 0 0 0 11104

N U e W N
e e e
[ I e e
e e e
OO O = =
S = = O O = =
[ T S U o R S

O = o = = NN RN NN W W W W U U O 3
O = NN Wk Ul OON Wk Ul Wk Ul kUl Ul D
(2 B> o) o) o) Bl o)) Bl ) Bl o) lNe) B ) Bl o) B o) le) Bl o) B o) o) i o) o)l o) Bl o) B el S

= o
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Model Development

For a customer with transaction history (x, ty,n),

Lp,0|x,tx,n) =p*Q1-p)" > -0)"

n—ty—1

+ Z px(l . p)tx—x+i9(1 . Q)tx+i
i=0

We assume that heterogeneity in p and 0 across customers
is captured by beta distributions:

_pX¥ i -p)Pt
B 93/—1(1 _ 9)6—1
goly,od) = B(y.o)
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Model Development

Removing the conditioning on the latent traits p and 0,
L(O(,B, )’, 5 | xl tX’")

1 1
- | JOL(p,9|x,tx,n)g(10|0<,B)g(9|%5)dvd9

B(x+x,B+n—x)B(y,0 +n)
B(«x, B) B(y,d)

n—itx—1

N Z Bx+x,B+tx—x+1)B(y+1,0 +tyx+1)
s B(«, B) B(y,d)

... which is (relatively) easy to code-up in Excel.

We call this the BG/BB (beta-geometric/beta-Bernoulli)

model.
83
A B [ ¢ [ o [ € [ F [ e [ w [T o+ T v T «x T v T ™ N

% aﬂ: é:igg Blalphabeta)  1.146 ~|  -EXP(GAMMALN(B1)+GAMMALN(B2)-GAMMALN(B1+B2)) |
z gamma 0.657 B(gamma,delta) 0.729
| 4| delta 2.783 —EXP(GAMMALN($B$1+A9)+GAMMALN($B$2+C9-A9)-

B GAMMALN($B$1+$B$2+C9))/$SE$1*EXP(GAMMALN($BS$3)+
a I 332258 ~SUMEs T GAMMALN($B$4+C9)-GAMMALN($B$3+$B$4+C9))/SES3

7
z X t x n #donors L(.|X=x,t_x,n) n-t_x-1 0 1 2 3 4 5
1 9] 6 6 6 1203  -2624.6  0.1129 1 01129 0 0 0 0 0 0

10 5 6 6 728 2126 7 faWaki=T~ 1 faWakileT~ fal fal fal 0 0 0
M 2 6 6 512 =IF(1$8<=$G9,EXP(GAMMALN($B$1+$A9)+ GAMMALN($B$2+$B9-$A9+1$8)- 0 0 o
= GAMMALN($B$1+$B$2+$B9+1$8))/$ES1*EXP(GAMMALN($B$3+1)+GAMMALN($B$4
[12] 3 6 6 357 +$B9+1$8)-GAMMALN ($B$3+$B$4+5B9+1$8+1))/$E$3,0) 0 0 0
[13] 2 6 6 234 13225 0.0035 T 0.0035 0 0 0 0 0 0
| 14] 1 6 6 129  -630.0  0.0076 -1 0.0076 0 0 0 0 0 0

15 5 5 6 335 -12 0 00136 0.0107 0 0 0 0 0
| 16] 4 5 6 284 -1447.1  0.0061 0 0.0046  0.0015 0 0 0 0 0
|17 | 3 5 ~D19*LN(F19)) 63.5 0.0036 0 0.0030 0.0006 0 0 0 0 0

18 2 5 5 T52.6  0.0041 0  0.0035  0.0005 0 0 0 0 0
[ 19] 1 5 6 119  -567.3  0.0085 [ SUM(H1g:N1g) 009 0 0 0 0 0
[20] 4 4 6 240 -9236  0.0213 00046 00152  0.0015 0 0 0 0
[ 21] 3 4 6 181 -915.7  0.0063 1 00030 0.0027  0.0006 0 0 0 0
[22] 2 4 6 155  -805.3  0.0055 1 00035 00015  0.0005 0 0 0 0
[ 23] 1 4 6 78  -356.5  0.0104 1 00076 0.0018  0.0009 0 0 0 0
| 24] 3 3 6 322 -11358  0.0294 2 00030 00230 0.0027 0.0006 0 0 0
25| 2 3 6 255 -1151.6  0.0109 2 00035 00054 00015  0.0005 0 0 0
| 26| 1 3 6 129  -545.0  0.0146 2 00076 00043 0.0018  0.0009 0 0 0
[ 27] 2 2 6 613 -1846.4  0.0492 3 00035 00383 0.0054 0.0015  0.0005 0 0
28] 1 2 6 277 -993.9  0.0276 3 00076 00130 00043 0.0018  0.0009 0 0
[29] 1 1 6 1091 -2497.1  0.1014 4 00076 00737 00130 00043  0.0018  0.0009 0

30 0 0 6 3464 -40443 03111 5 00362 01909 0.0459 0.0189 0.0098 0.0058  0.0037
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Estimated Beta Distributions

3 A 6 7
2 4
a(p) g(0)
1 2
0 T 1 0 T 1
0.0 0.5 1.0 0.0 0.5 1.0
p 0
«=1.204, B = 0.750 y =0.657, 8 = 2.783
E(P) =0.616 E(®) =0.191
85
Key Results

We are interested in the probability that a customer makes
a transaction at the tth transaction opportunity.

- Recall our model assumptions:
- P(Y(t) =1|p,aliveatt) =p
- P(alive att| 0) = S(t) = (1 — 0)¢

- Therefore, P(Y(t) =1|p,0) = p(1 — 0)".

- But p and 0 are unobserved ...
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Key Results

Removing the conditioning on p and 0:

P(Y(t) =1|«x,B,y,0)

1 r1
:J;kPOﬂnzlwmmgwlmBmwﬂxénde

:(az3>326f§f%

which can computed using the recursion

r(aiﬁ)(yi5> L=l

PY(t)=1|B,y,0) =1 O0+t—1
y+o+t-1
xP(Y(t-1)=1) t=2,3,...

87

Key Results
Expected # transactions in {1,2,...,n}:
x o)
E[X(n) e, B,y,0] = (0(+ﬁ) (;y—l)

31 I'y+¢6) T(1+6+mn)
I(y+6+n) TI(1+)0) '

Alternatively,

E[X(n) &, B,y,81=> P(Y(t)=1|xRB,y,5).
t=1
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Key Results
Distribution of transactions in the interval {1, 2,...,n}:

P(X(n) :X|O(,B,y,6)

B (n)B(a+x,B+n—x)B(y,6+n)
- \x B(x, B) B(y,9)

+"§ i\B(ox+x,B+i—x)B(y+1,8+1)
Z\x B(«x, B) B(y,6)
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Key Results

Distribution of transactionsin {n +1,...,n + n*}:

PX(n,n+n™)=x*|xB,y,0)

B _B(y,6+mn)
= ool - S
N n*\B(x+x*,B+n*—x*)B(y,0 + n+mn¥")
X* B(x, B) B(y,0)
+"*Z_1 i \Bla+x*,f+i—x*)B(y+1,6 +n+1)
e \XF B(«x, B) B(y,9) '
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Cumulative # Repeat Transactions

Fit of the BG/BB Model

4,000 -
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3.000 4 I:l Model
=2
o
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H
0 = T T T T T T T
0 1 2 3 4 5 6

# Repeat Transactions
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Tracking Cumulative Repeat Transactions

40,000 - |
—=— Actual :
--¢-- Model I
30,000 - |
20,000 -
10,000
0

T I T I I T I T T I I
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Year
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# Repeat Transactions

Tracking Annual Repeat Transactions

6,000 -

5,000 ~

4,000

3,000 -

2,000

—*— Actual

1,000 4 --¢-- Model
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Repeat Transactions in 2002 - 2006

7,000 7 —
6,000 - Bl Acwal
|:| Model

5,000 -

4,000 -

# People
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1,000 -
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# Repeat Transactions
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Motivating Problem 2 (Q2a)

Year 1 Year 2 Year n
| | F--- >
P(donate) | 1.0 CP(Y(1)=1) ' P(Y(n—-1) =1)
Net CFE v(0) v(1) vin-1)
discount 1 : 1 : o
| o (1+4d) ! L (1 +d)n!
v P(Y(t) =1)
E(CLV) =
(CLV) = v(0) +t:zl drdr
_ = P(Y(t) = 1)}>
=141+
5( = (A+ad)t
95

Motivating Problem 2 (Q2a)

A | B | c¢ | o | € | F | @
1 alpha 1.204 E(CLV) $185 _
2 beta 0.750
3| gamma 0.657 | =B6*(1+SUMPRODUCT(C9:C107,09:D107))
4 delta 2.783
5 d  0.100
6 v bar $50 =B1/(B1+B2)*B4/(B3+B4)
7
8 Year t P(Y()=1) , disc.
9 2 1 0.4985  0.9091
10 3 2, 04248  0.8264
11 A / n 272¢g n 7512
12 =C9*(SBS$4+B10-1)/(SBS3+SBS4+B10-1)
13 6 5 03058  0.6209
14 7 6 02820 0.5645
15 8 7 02624  0.5132
16 9 8 02459  0.4665
17 10 9 02318 0.4241
106] 99 98 00561  0.0001
107 100 99  0.0558  0.0001




Motivating Problem 2 (Q2b)

Given their donation behavior to date, in how many of the

subsequent five years can we expect a supporter to make a
donation?

What about 100004 (who made repeat donations in
four years with the last occurring in 2001) versus
100009 (who made repeat donations in five years
with the last occurring in 2000)?
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ID 1995 1996 1997 1998 1999 2000 2001 2002-2006

100001 1 0 0 0 0 0 0 ?
100002 1 0 0 0 0 0 0 ?
100003 1 0 0 0 0 0 0 ?
100005 1 0 1 1 1 0 1 ?
100006 1 1 1 1 0 1 0 ?
100007 1 1 0 1 0 1 0 ?
100008 1 1 1 1 1 1 1 ?
100010 1 0 0 0 0 0 0 ?
111102 1 1 1 1 1 1 1 ?
111103 1 0 1 1 0 1 1 ?
111104 1 0 0 0 0 0 0 ?
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# People
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Joint Distribution of “Buy” and “Die” Coins
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100004 vs. 100009

100004 100009

E(P) 0.65 0.83
E(®) 0.07 0.12

Expected # donations in 2002 - 2006 |
alive in 2001: 2.71 3.23

P(alive in 2001): 1.00 0.56
Expected # donations in 2002 - 2006: 2.71 1.81
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Conditional Expectations

- We wish to derive an expression for the expected
number of transactions across the next n* transaction
opportunities for an individual with observed behavior
(X, tyx,n).

- Suppose we know that the individual is alive at n, and
we know their p and 0:

n+1 n+2 n+n*

P (buy)
P (alive)

p
(1-o0m

p
(1-0)

p
(1-0)°
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Conditional Expectations

- Therefore,
E[X(n,n+n*)|p,0,alive at n|
n*
= > p(1-0)
s=1

_p1-0) pa-omt!
- 0 0 '

- However,
- We do not know whether the customer is alive at n

- p and 0 are unobserved
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Conditional Expectations

What is the probability that an individual with observed
behavior (x, ty,n) is alive at n?

- Recall that for a customer with transaction history
(x’ tX’ n)

L(p,0|x,tx,n) =p*(1-p)" 1 -0)"

+ Z px(l _ p)tx—x+i9(1 _ Q)tx+i
i=0

- This was formulated by assuming the customer is alive
or dead, and then removing the conditioning.
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Conditional Expectations

- According to Bayes’ theorem

A
P(alive atn| x,ty,n) = ——
(aliv | X, tx, M) AB

where

A=P(x,t,,n|alive at n) P(alive at n)

B=P(x,t,,n|dead at n) P(dead at n)

- It follows that

pX(l _ p)n—X(l _ 9)1’1
L(p19|xatXan)

P(alive atn|p,0;x,tx,n) =
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Conditional Expectations

We can now remove the conditioning on the customer
being alive at n, but p and 0 are still unobserved.

- It makes no sense touse g(p |, ) and g(0 |y, o) as
we know something about the customer’s behavior,
(x’ tXa n) .

- By Bayes’ theorem, the joint posterior distribution of P
and O is given by

gp,0le,B,y,0;x,tx,n)

_L(p,0]x,ty,n)g(p o, B)g(0]y,0)
a L((X,B,Y,5|X,tx;n) .
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Conditional Expectations

Combining the various elements give us
E[X(n,n+n*) |, B,y,0;X,tx,n]

1 1
— Jo Jo E[X(n,n+n*)|p,0,alive at n]
X P(alive at n | p, 0;x,tyx,n)
Xg(p,01a,B,y,0,x,tx,n)idpdo

B 1 Blx+x+1,B+n—Xx)
~ L(x, By, 6 x,tx, 1) B(«x, B)

1) [(y+6)(TA+6+n) TA+o+n+n*)
y—-1)T(1+6) (I'(y+d6+n) I(y+o+n-+n*)
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A [ B | ¢ [ o [ E F G H [0 T xk [ v T m [ N J o P
1 |alpha 1.204 B(alpha,beta) 1.146 n* 5
2 Jbeta 0.750 =B4/(B3-1)*EXP(GAMMALN(B3+B4)-
3 |gamma 0657  Blgammadelta) 0729 “constant” 1896 < |  GAMMALN(BA+L))*[EXP(GAMMALN(1+BA4+C9)-
2 delta 2.783 GAMMALN (B3+B4+C9))-EXP(GAMMALN(1+B4+C9+H1)-
= GAMMALN(B3+B4+C9+H1)))
Eam 332256
7
z plx tx n #donors L{. [x,t_x,n) CE n-tx-1 0 1 2 3 4 H
9 6 6 6 1203 -2624.5 0.1129 3.753 0.2233 -1 01129 0 [ 0 0 0 0
[10] 5 6 6 728 & 3.232 00232 N1 00136 0 0 [} 0 0 0
111} 4 6 6 512 2711 =EXP(GAMMALN(SBS1+A9+1}+ 0 0 0 0 0 0
[12] 3 6 6 357 2.190 GAMMALN($BS2+C9-A9)- 0 [ [ 0 0 0
113] 2 6 6 234 -13225 0.0035 1.669 |GAMMALN($BS1+5B$2+C9+1))/$ES1| O 0 0 0 0 0
[14] 1 6 6 129 6300 0.0076 1.148 . . 0 [ [ 0 0 0
[15] 5 5 6 335 12451 0.0243 1.813 0.0232 0 00136 00107 0 o 0 0 0
|16 4 5 6 284 -1447.1 0.0061 2,030 0.0066 0 00046 00015 0 0 0 0 0
17 3 5 6 225 12635 0.0036 1.805 0.0035 0 00030 0.0006 0 o 0 0 0
18] 2 5 6 173 9526 0.0041 1.443 0.0031 0 00035  0.0005 0 0 0 0 0
[19] 1 5 6 119 -567.3 0,0085 1,022 0.0046 0 00076  0.0009 0 [} 0 0 0
120 4 4 6 240 9236 0.0213 0.583 0.0066 1 00046 00152 00015 o 0 0 0
[21] 3 4 6 181 9157 0.0063 1,035 0.0035 1 00030 00027 0.0006 0 0 0 0
[22] 2 4 6 155 -805.3 0.0055 1.058 0.0031 1 00035 00015 0.0005 o 0 0 0
23] 1 4 6 78 3565 0,0104 0.839 0.0046 1 00076 00018 0.0009 0 0 0 0
[24] 3 3 6 322 113538 0.0294 0.224 0.0035 2 00030 00230 00027 0.0006 0 0 0
B 2 3 6 255 -1151.6 0.0109 0.536 0.0031 2 00035 00054 00015 00005 0 0 0
26| 1 3 6 129 5450 0.0146 0.594 0.0046 2 00076 00043 00018  0.0009 0 0 0
27 2 2 6 613  -18464 0.0492 0.119 0.0031 3 00035 00383 00054 00015 0.0005 0 0
28] 1 2 6 277 9939 0.0276 0.314 0.0046 3 00076 00130 00043 00018  0.0009 0 0
[29] 1 1 6 1091 -2497.1 0.1014 0.086 0.0046 4 00076 00737 00130 00043 00018  0.0009 0
30 0 0 6 3464 40443 03111 0.073 0.0120 5 00362 01909 00459 0.0189  0.0098  0.0058  0.0037
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Expected # Transactions in 2002 - 2006
as a Function of Recency and Frequency

# Rpt Trans. Year of Last Transaction

(1996-2001) 1995 1996 1997 1998 1999 2000 2001
0 0.07
1 0.09 031 059 084 1.02 1.15
2 0.12 054 1.06 144 1.67
3 0.22 1.03 1.80 2.19
4 0.58 2.03 271
5 1.81  3.23
6 3.75
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Actual Average # Transactions in 2002 - 2006
as a Function of Recency and Frequency

# Rpt Trans. Year of Last Transaction

(1996-2001) 1995 1996 1997 1998 1999 2000 2001
0 0.17
1 0.22 0.37 0.60 0.56 1.14 1.47
2 040 046 0.74 1.41 1.89
3 046 0.94 1.66 2.29
4 0.84 1.91 2.72
5 1.74  3.06
6 3.53
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Conditional Expectations by Frequency

—>—  Actual
---¢--- Model

# Repeat Transactions (2002 - 2006)
N

# Repeat Transactions (1996 -2001)
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Conditional Expectations by Recency

# Repeat Transactions (2002 -2006)
N

1995 1996 1997 1998 1999 2000 2001

Year of Last Transaction
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Expected # Transactions in 2002 - 2006
as a Function of Recency and Frequency

# Rpt Trans. Year of Last Transaction

(1996-2001) 1995 1996 1997 1998 1999 2000 2001
0 0.07
1 0.09 031 059 084 1.02 1.15
2 0.12 054 1.06 144 1.67
3 0.22 1.03 1.80 2.19
4 0.58 2.03 271
5 1.81  3.23
6 3.75
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Expected # Transactions in 2002 - 2006
as a Function of Recency and Frequency

E(# Trans. in 2002-2006)

ES

w

n

o

Frequency (x) 1995
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P(alive in 2001) as a
Function of Recency and Frequency

# Rpt Trans. Year of Last Transaction

(1996-2001) 1995 1996 1997 1998 1999 2000 2001
0 0.12
1 0.07 0.27 052 0.73 0.89 1.00
2 0.07 032 0.63 0.86 1.00
3 0.10 047 082 1.00
4 0.22 0.75 1.00
5 0.56  1.00
6 1.00
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Posterior Mean of P as a
Function of Recency and Frequency

# Rpt Trans. Year of Last Transaction

(1996-2001) 1995 1996 1997 1998 1999 2000 2001
0 0.49
1 0.66 0.44 0.34 0.30 0.28 0.28
2 0.75 0.54 0.44 0.41 0.40
3 0.80 0.61 0.54 0.53
4 0.82 0.68  0.65
5 0.83 0.78
6 0.91
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Computing E(CLV)

- Recall:

(0]

E(CLV) = >

t=1

v(t)S(t)
(1+a)yt -’

- Assuming that an individual’s spend per transaction is
constant, v (t) = net cashflow /transaction x y(t).

- The expected lifetime value of a “just-acquired”
customer can be expressed as

E(CLV) = E(net cashflow / transaction)

= E[Y(t) | alive at t] S (t)
thzl (1+d)t '

—~
discounted expected transactions
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Computing DET

- The quantity DET, discounted expected transactions, is
the present value of the expected transaction stream
for a customer “just acquired” in Period “0”.

- Suppose we know their p and 0:

1 2 [

Pbuy) | p ' p ! p

P(alive) |, (1-60) | (1-6)?2 | o (1-0)t |

N | 1 | 1 : | 1 :
iscount s T4 L A+ d)2 L+ d)t
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Computing DET

00 . s
- Therefore, DET(p’ 0,d) = Z p(l 9)
s=1

— 1+d
_p(1-0)
d+0

- Taking expectations over the distributions of p and 0,

DET(x, B,y,0,d)

1 1
- JO JO DET(p,0,d)g(p | x,B)g(0]y,5)dp do

- (aiﬁ)(yi5)2Fl(1’5+(1£i;)6+hﬁ)’

where > F; (-) is the Gaussian hypergeometric function.
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The Gaussian Hypergeometric Function

2Fi(a,b;c;z) =

I'(c) il“(a+j)r(b+j)z_l'
F@r®) & T+

Easy to compute, albeit tedious, in Excel as
2Fi(a,b;c;z) = ) u;
j=0

using the recursion

wj _la+j-1Hb+j-1)
Uj1 (c+j-1)j

z,j=1,2,3,...

where uy = 1.
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Computing E(RLV)
- Standing at time n,

E(RLV) = E(net cashflow / transaction)

(0]

Z E[Y(t)|alive att]S(t|t > n)
(1+d)t—m

t=n+1

discounted expected residual transactions

- The quantity DERT, discounted expected residual
transactions, is the present value of the expected
future transaction stream for a customer with a given
transaction history.
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Computing DERT

For a customer with transaction history (x, ty,n),
DERT(O(J B’ }’, 5! dlxl tXJ n)

— Jl Jl {DERT(d | p, 0, alive at n)
v X P(alive at n | p, 0;x,tx,n)
xg(p, 0o, B,y,5x,tx,n) | dpdo
Blx+x+1,+n—-—x)B(y,0 +n+1)
B B(a, B) B(y,8)(1+d)
Fi(L+n+Ly+5+n+1;1)
L(e,B,y,0|x,tx,n)
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A [ 8 [ ¢ [T o [ €& [T F T[T & T w [ o T v T «x [ &t [ M T N T o

1 |alpha 1.204 B(alpha,beta) 1.146 d 0.100
[ 2 |beta 0.750

3 [gamma 0.657 B{gamma,delta) 0.729
[ 4 |delta 2.783
5|
6L -33225.6
1 7]

8 plx tx n #donors L(.|x,t_x,n) DERT n-t_x-1 1] 1 2 3 4 5
[ 9| 6 6 6 1203 -2624.5 0.1129 5.910 1 01129 0 0 0 0 0 0
[ 10] 5 6 6 728 -3126.7 00136 5.089 \ 1 00136 0 0 0 0 0 0
| A8 5512 270 00046 4269 by GAMMALN(SBS1+A9+1)+GAMMALN(SES2+Co-A0) S _ O _ O
[29] 1 1 6 1091 2497.1 0.1012 0.135| GAMMALN($BS1+SBS2+CO+1))*EXP(GAMMALN(SBS3)+ 10018  0.0009 [}
[30] 0 0 44.3 03111 0.115| GAMMALN($BS4+Co+1)-GAMMALN($BS3+$RS4+Cor1))/ DO0S8  0.0058  0.0037
1311 (SEST*SES3*(14$HS1))*$D$33/F9
132] i

33 21 7714 0 1
31 2 1 1 08519 < -F33*($D$34+£34-1)*

[35] b 978 2 0.7300 ($D$35+£34-1)*5D537/

[35] ¢ 1044 3 06286 ((5D$36+E34-1°E34)

|37 z 091 4 05435

| 38] 5 04717

e ~ T TTTTTTTTTTTTTTTTT T 1= 7
183 150 9.768E-08

Recency and Frequency (d = 0.10)
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DERT as a Function of

# Rpt Trans.

Year of Last Transaction

(1996-2001) 1995 1996 1997 1998 1999 2000

2001

0

S Ul bk W NN

0.11
0.13 049 094 1.32 1.61
0.19 084 1.67 2.27
0.35 1.63 2.84
0.92  3.20
2.86

1.81
2.63
3.45
4.27
5.09
5.91

124




Expected # Transactions in 2002 - 2006
as a Function of Recency and Frequency

# Rpt Trans. Year of Last Transaction

(1996-2001) 1995 1996 1997 1998 1999 2000 2001
0 0.07
1 0.09 031 059 084 1.02 1.15
2 0.12 054 1.06 144 1.67
3 0.22 1.03 1.80 2.19
4 0.58 2.03 271
5 1.81  3.23
6 3.75
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DERT versus Conditional Expectations

- For any given analysis setting, the DERT numbers differ
from the conditional expectations by a constant,

independent of the customer’s exact purchase history.

- In this empirical setting, DERT = 1.575 x CE.

- As aresult, any ranking of customers on the basis of

DERT will be exactly the same as that derived using the
conditional expectation of purchasing over the next n*

periods.
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Concepts and Tools Introduced

- Computing CLV in noncontractual settings (where
“death” is unobserved).

- The notion of latent attrition (“buy till you die”)
models.

- The BG/BB model for discrete-time noncontractual
settings.

- Recency and frequency as sufficient statistics.

- The notion of DET and DERT for noncontractual

settings and their evaluation when the transaction
stream is characterized by the BG/BB model.
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Further Reading

Fader, Peter S., Bruce G.S. Hardie, and Jen Shang (2010),
“Customer-Base Analysis in a Discrete-Time
Noncontractual Setting,” Marketing Science, 29
(November-December), 1086-1108.
<http://brucehardie.com/papers/020/>

Fader, Peter S. and Bruce G.S. Hardie (2011),
“Implementing the BG/BB Model for Customer-Base
Analysis in Excel.”
<http://brucehardie.com/notes/010/>

128



“Discrete-Time” Transaction Data
A transaction opportunity is

- a well-defined point in time at which a transaction
either occurs or does not occur, or

- a well-defined time interval during which a (single)
transaction either occurs or does not occur.

“necessarily discrete” attendance at sports events
attendance at annual arts festival

“generally discrete” charity donations
blood donations

discretized by cruise ship vacations
recording process
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From Discrete to Continuous Time

- Suppose we have a year of data from Amazon.

- Should we define
- 12 monthly transaction opportunities?
- 52 weekly transaction opportunities?

- 365 daily transaction opportunities?
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Classifying Customer Bases

Continuous

Opportunities for
Transactions

Discrete

Grocery purchasing
Doctor visits

Hotel stays

Credit cards
Utilities

Continuity programs

Conf. attendance
Prescription refills

Charity fund drives

Magazine subs
Insurance policies

“Friends” schemes

Noncontractual

Contractual

Type of Relationship With Customers

Adapted from: Schmittlein, David C., Donald G. Morrison, and Richard Colombo (1987), “Counting Your Customers: Who Are
They and What Will They Do Next?” Management Science, 33 (January), 1-24.
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From Discrete to Continuous Time

The BG/BB model integrates two processes: timing and
counting.

Timing: The BG component captures the time

until death.

Counting: The BB component captures the counting
of transactions while alive.

What are the equivalent distributions in a continuous-time
setting?
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From Discrete to Continuous Time

As the number of divisions of a given time period — oo

binomial — Poisson

beta-binomial — NBD

geometric — exponential

beta-geometric — Pareto Type II

BG/BB — Pareto/NBD
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Vol. 33, No. 1, January 1987
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COUNTING YOUR CUSTOMERS: WHO ARE THEY AND
WHAT WILL THEY DO NEXT?

DAVID C. SCHMITTLEIN, DONALD G. MORRISON AND RICHARD COLOMBO
The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania 19104
Graduate School of Business, Columbia University, New York, New York 10027
Department of Marketing, Tisch Hall, New York University, New York, New York 10002

This article is concerned with counting and identifying those customers who are still active.
The issue is important in at least three settings: monitoring the size and growth rate of a firm’s
ongoing customer base, evaluating a new product’s success based on the pattern of trial and
repeat purchases, and targeting a subgroup of customers for advertising and promotions. We
develop a model based on the number and timing of the customers’ previous transactions. This
approach allows computation of the probability that any particular customer is still active.
Several numerical examples are used to illustrate applications of the model.

(MARKETING; CONSUMER BEHAVIOR; POISSON PROCESS; PROBABILITY MIX-
TURE MODELS; NEW PRODUCT INTRODUCTIONS; MARKET SEGMENTATION;
BROKERAGE FIRMS)
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PETER S. FADER, BRUCE G.S. HARDIE, and KA LOK LEE*

The authors present a new model that links the well-known RFM
(recency, frequency, and monetary value) paradigm with customer life-
time value (CLV). Although previous researchers have made a concep-
tual link, none has presented a formal model with a well-grounded
behavioral “story.” Key to this analysis is the notion of “iso-value” curves,
which enable the grouping of individual customers who have different
purchasing histories but similar future valuations. Iso-value curves make
it easy to visualize the interactions and trade-offs among the RFM meas-
ures and CLV. The stochastic model is based on the Pareto/NBD frame-
work to capture the flow of transactions over time and a gamma-gamma
submodel for spend per transaction. The authors conduct several holdout
tests to demonstrate the validity of the model’s underlying components
and then use it to estimate the total CLV for a cohort of new customers of
the online music site CDNOW. Finally, the authors discuss broader
issues and opportunities in the application of this model in actual

practice.

RFM and CLV: Using Iso-Value Curves for
Customer Base Analysis

Journal of Marketing Research
Vol. XLII (November 2005), 415-430
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Further Reading

Fader, Peter S. and Bruce G.S. Hardie (2005), “A Note on
Deriving the Pareto/NBD Model and Related Expressions.”
<http://brucehardie.com/notes/009/>

Fader, Peter S., Bruce G. S. Hardie, and Ka Lok Lee (2005), “A
Note on Implementing the Pareto/NBD Model in MATLAB.”
<http://brucehardie.com/notes/008/>

R Package “BTYD: Implementing Buy ‘Til You Die Models.”
<http://cran.r-project.org/package=BTYD>

Fader, Peter S. and Bruce G.S. Hardie (2013), “The Gamma-
Gamma Model of Monetary Value.”
<http://brucehardie.com/notes/025/>
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Pareto/NBD Likelihood Function

L(r,o, 8,81 x,tx, T)

T(r+x)o’ B s Fl(r+s+x,s+1L;r+s+x+1; o‘j‘;ti)
B I'(r) {<r+s +x) (0 + Ex )T HS+X

¥ +x 2F1(r+s+x,s;r+s+x+1;gT_g) o= B
r+S+x (x+ T)r+s+x =

L(T, alS’B | X,tX!T)

I'(r +x)x"ps 5 2F1(r+s+x,r+x;r+g+x+1;£+—t0;)
- I'(r) {<r+s+x> (B + Ly)T +5+x
( v+ X )2F1(T+S+x,r+x+1;r+3+x+1;§+_%

(B + T)T+S+x

Y¥+S+Xx

)},ﬁasﬁ
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“Counting Your Customers” the Easy Way:
An Alternative to the Pareto/NBD Model

Peter S. Fader

The Wharton School, University of Pennsylvania, 749 Huntsman Hall, 3730 Walnut Street,
Philadelphia, Pennsylvania 19104-6340, faderp@wharton.upenn.edu

Bruce G. S. Hardie

London Business School, Regent’s Park, London NW1 4SA, United Kingdom, bhardie@london.edu

Ka Lok Lee

Catalina Health Resource, Blue Bell, Pennsylvania 19422, kaloklee@alumni.upenn.edu

Today’s managers are very interested in predicting the future purchasing patterns of their customers, which
can then serve as an input into “lifetime value” calculations. Among the models that provide such capa-
bilities, the Pareto/NBD “counting your customers” framework proposed by Schmittlein et al. (1987) is highly
regarded. However, despite the respect it has earned, it has proven to be a difficult model to implement, par-
ticularly because of computational challenges associated with parameter estimation.

We develop a new model, the beta-geometric/NBD (BG/NBD), which represents a slight variation in the
behavioral “story” associated with the Pareto/NBD but is vastly easier to implement. We show, for instance,
how its parameters can be obtained quite easily in Microsoft Excel. The two models yield very similar results
in a wide variety of purchasing environments, leading us to suggest that the BG/NBD could be viewed as an
attractive alternative to the Pareto/NBD in most applications.
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Further Reading

Fader, Peter S., Bruce G. S. Hardie, and Ka Lok Lee (2005),
“Implementing the BG/NBD Model for Customer Base Analysis
in Excel.” <http://brucehardie.com/notes/004/>

Fader, Peter S., Bruce G.S. Hardie, and Ka Lok Lee (2007),
“Creating a Fit Histogram for the BG/NBD Model .”
<http://brucehardie.com/notes/014/>

Fader, Peter S. and Bruce G.S. Hardie (2013), “Overcoming the
BG/NBD Model’s #NUM! Error Problem.”

<http://brucehardie.com/notes/027/>
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Approaches to Customer-Base Analysis
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Customer-Base Analysis
- Faced with a customer transaction database, we may
wish to determine

- which customers are most likely to be active in the
future,

- the level of transactions we could expect in future
periods from those on the customer list, both
individually and collectively, and

- CLV/RLV

- Forward-looking/predictive versus descriptive.
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Traditional Modelling Approach

The transaction data are split into two consecutive periods:

- Data from the second period are used to create the
dependent variable of interest (e.g., buy/not-buy,
number of transactions, total spend).

- Data from the first period are used to create the
predictor variables.

- Period 1 behavior is frequently summarized in terms of
the customer’s “RFM” characteristics: recency (time of
most recent purchase), frequency (number of
purchases), and monetary value (average spend per
transaction).
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Traditional Modelling Approach

future = f(past)

Past : Future
Period 1 Period 2 |  Period 3 Period 4
X y
y = f(B,x)
X f(B,x)
?? f(B,7?)
143

Traditional Modelling Approach

In addition to the problem of having to predict Period 3
behavior in order to predict Period 4 behavior (and so on),
the traditional approach has other limitations:

- The regression-type models are ad hoc in nature; there
is no well-established theory. (Why use RFM? Is the fact
that “it works” a good enough reason?)

- The observed behavioral variables (e.g., RFM) are only
imperfect indicators of underlying behavioral
characteristics. Different “slices” of the data will yield
different values of the variables and therefore different
parameter estimates ... and different forecasts.
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Comparison of Modelling Approaches

Traditional approach
future = f(past)

Past : Future

Y

latent
characteristics

(0)

Probability modelling approach
0 = f(past) — future = f(0)
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Further Considerations
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Covariates

- Types of covariates:

customer characteristics (e.g., demographics, attitudes)

marketing activities

competition

“macro” factors

- Handling covariate effects:

- explicit integration (via latent characteristics)

- create segments and apply no-covariate models

- Need to be wary of endogeneity bias and sample
selection effects
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Covariates

Contractual:

Schweidel, David A., Peter S. Fader, and Eric T. Bradlow (2008),
“Understanding Service Retention Within and Across Cohorts

Using Limited Information,” Journal of Marketing, 72
(January), 82-94.

Noncontractual:

Fader, Peter S. and Bruce G.S. Hardie (2007), “Incorporating
Time-Invariant Covariates into the Pareto/NBD and BG/NBD
Models.” <http://brucehardie.com/notes/019/>

Schweidel, David A. and George Knox (2013), “Incorporating
Direct Marketing Activity into Latent Attrition Models,”
Marketing Science, 32 (May-June), 471-487.
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Correlation

We typically assume independence of the latent traits:

- Correlation can sometimes be accommodated using Sarmanov
distributions:

Park, Young-Hoon and Peter S. Fader (2004), “Modeling Browsing Behavior
at Multiple Websites,” Marketing Science, 23 (Summer), 280-303.

Danabher, Peter J. and Bruce G.S. Hardie (2005), “Bacon With Your Eggs?
Applications of a New Bivariate Beta-Binomial Distribution,” The American
Statistician, 59 (November), 282-286.

- Transformations of multivariate normals are more flexible ... but
there are no closed-form solutions.

Fader, Peter S. and Bruce G.S. Hardie (2011), “Implementing the Sgg-G/B
Model in MATLAB.” <http://brucehardie.com/notes/023/>

Fader, Peter S. and Bruce G. S. Hardie (2015), “A Correlated Pareto/NBD
Model.” <http://brucehardie.com/notes/034/>
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The Cost of Model Extensions

No closed-form likelihood functions; need to resort to
simulation methods.

Need full datasets; summaries (e.g., RFM) no longer
sufficient.
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Philosophy of Model Building

Problem: Managers are not using the “state-of-the-art”
models developed by researchers.

Solution: Adopt an evolutionary approach to model

building.

- Maximize likelihood of acceptance by starting with a
(relatively) simple model that the manager can
understand AND that can be implemented at low cost.

- Model deficiencies can be addressed, and more
complex (and costly) models can be developed/
implemented, if benefits > cost.
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Philosophy of Model Building

We are specifically interested in kick-starting the
evolutionary process:

- Minimize cost of implementation
- use of readily available software (e.g., Excel)

- use of data summaries

- Purposively ignore the effects of covariates and other
“complexities” at the outset.

Make everything as simple as possible, but not simpler.

Albert Einstein
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Discussion
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Tell Us Your Stories

Pete: faderp@wharton.upenn.edu
www . petefader.com
@faderp

Bruce: bhardie@london.edu
www.brucehardie.com
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