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Problem 1:
Projecting Customer Retention Rates

(Modeling Discrete-Time Duration Data)



Background

One of the most important problems facing
marketing managers today is the issue of customer
retention. It is vitally important for firms to be able to
anticipate the number of customers who will remain
active for 1, 2,..., T periods (e.g., years or months) after
they are first acquired by the firm.

The following dataset is taken from a popular book
on data mining (Berry and Linoff, Data Mining
Techniques, Wiley 2004). It documents the “survival”
pattern over a seven-year period for a sample of
customer who were all “acquired” in the same period.

# Customers Surviving At Least 0-7 Years

Year # Customers % Alive

0 1000 100.0%
1 869 86.9%
2 743 74.3%
3 653 65.3%
4 593 59.3%
5 551 55.1%
6 517 51.7%
7 491 49.1%

Of the 1000 initial customers, 869 renew their contracts at
the end of the first year. At the end of the second year, 743
of these 869 customers renew their contracts.
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% Survived

Modeling Objective

Develop a model that enables us to project the
survival curve over the next five years (i.e., out
toT =12).

Modeling Objective
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Natural Starting Point
Project survival using simple functions of time:

- Consider linear, quadratic, and exponential
functions

- Let v = the proportion of customers surviving at
least t years

y =0.925 - 0.071t R? = 0.922
y =0.997 — 0.142t + 0.010¢*> R? = 0.998
In(y) = —0.062 — 0.102t R? = 0.964
7
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Survival Curve Projections
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Developing a Better Model (I)
Consider the following story of customer behavior:

i. At the end of each period, an individual renews his
contract with (constant and unobserved) probability
1-0.

ii. All customers have the same “churn probability” 0.
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Developing a Better Model (I)
More formally:

- Let the random variable T denote the duration of
the customer’s relationship with the firm.

- We assume that the random variable T has a
(shifted) geometric distribution with parameter 0:

P(T=t|0)=01-0)""', t=1,2,3,...
P(T>t|0)=(1-0)", t=1,2,3,...
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Developing a Better Model (I)

The probability of the observed pattern of contract
renewals is:

[9]131[0(1 . 9)1]126[9(1 . 9)2]90
X [0(1—-0)°1°°16(1 — 0)*1**[6(1 - 0)°]**
X [0(1—-0)°1°[(1 - 6)71*!
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In [P(data)]

Estimating Model Parameters

- Let us assume that the observed data are the

outcome of a process characterized the “coin-
flipping” model of contract renewal.

- Which value of 0 is more likely to have “generated”

the data?

0 P(data) In [P (data)
0.2 9.2 x10°7% —1832.9
0.5 1.6 x 1071221 —3501.8
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Estimating Model Parameters
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Estimating Model Parameters

We estimate the model parameters using the method of
maximum likelihood:

- The likelihood function is defined as the probability of
observing all of the data points

- This probability is computed using the model and is viewed as
a function of the model parameters:

L(parameters) = p(data|parameters)

- For any given set of parameters, L(-) tells us the probability
of obtaining the actual data

- For a given dataset, the maximum likelihood estimates of the
model parameters are those values that maximize L(-)
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Estimating Model Parameters

The log-likelihood function is defined as:

LL(0|data) = 131 xIn[P(T =1)] +
126 X In[P(T = 2)] +
n
26 X In[P(T =7)] +
491 X In[P(T > 7)]

The maximum value of the log-likelihood function is
LL = —-1637.09, which occurs at 0 = 0.103.
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Estimating Model Parameters

A B C D | E

1 [theta 0.5000 )
2 [LL -3414.44 eI_SUM(EG'EB)'
3 =D6*LN(B6)
4 Year P(T=t) # Cust. # Lost
5 0 1000
6 1 0.5000 869 131 -90.80
7 2  0.2500 743 126 -174.67
8 3  0.1250 <=$B$1*(1-$B$1)"(A8-1)}7.15
9 4 0.0625 593 60 -166.36
10 5  0.0313 551 42 -145.56
11 6 0.0156 517 34  -141.40
12 7  0.0078 491 26 -126.15
1 2 —C12*LN(1-SUM(B6:B12)) |—=>  -2382.3469

| | |
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Estimating Model Parameters

Solver Parameters

Set Target Cell:

(&) Max

B Changing Cells:
$E41

Equal Tos

Subject ko the Constraints:

$B$1 <= 0,9999
£B§1 >=0.0001

X
-
OMin O value of: 0

Help
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% Survived

Survival Curve Projection
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What’s wrong with this story of customer

contract-renewal behavior?
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Developing a Better Model (II)
Consider the following story of customer behavior:

i. At the end of each period, an individual renews his

contract with (constant and unobserved) probability
1-0.

ii. “Churn probabilities” vary across customers.

21

Developing a Better Model (II)
More formally:

i. The duration of an individual customer’s
relationship with the firm is characterized by the
(shifted) geometric distribution with parameter 6.

ii. Heterogeneity in 0 is captured by a beta distribution
with pdf

0> 1(1 - 0)F!

f(9|0(13): B(O(,ﬁ)
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The Beta Function

- The beta function B(«, B) is defined by the integral

1
B(x,B) = JO t* (1 —t)f'dt, «> 0,8 >0,

and can be expressed in terms of gamma functions:

I'(e0T(B)

B(a,ﬁ) = m-

- The gamma function I'(z) is defined by the integral

o0

I'(z) = J tZle tdt, z> 0,
0

and has the recursive propertyI'(z + 1) = zI'(2).
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The Beta Distribution

gx-1(1 — 9)p-1
0l B) = ,0<0<1.
SO, pB) B(x.B)
- The mean of the beta distribution is
X
E(9) = x+ B

- The beta distribution is a flexible distribution ...

is mathematically convenient

24
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General Shapes of the Beta Distribution

i

Developing a Better Model (II)

For a randomly-chosen individual,

1
P(T=t|0(,[3)=J0P(T=t|9)f(9|0(,[3)d9

_Blax+1,B+t-1)
- B(x,B)

1
P(T>t|(x,B)=JOP(T>t|9)f(9|o<,B)d9

_ B(a,B+1)
- B(x,p)

This is the shifted-beta-geometric (sBG) distribution.
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Computing sBG Probabilities

We can compute sBG probabilities by using the
following forward-recursion formula from P(T = 1):

X
t=1
x+f
P(T=t)=-
B+t—2 B B
ko<+ﬁ+t—1P(T_t 1) t=2,3,...
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Estimating Model Parameters
The log-likelihood function is defined as:

LL(x, Bldata) = 131 x In[P(T =1)]+
126 X In[P(T = 2)] +

26 X In[P(T =7)] +
491 X In[P(T > 7)]

The maximum value of the log-likelihood function is
LL = —1611.16, which occurs at & = 0.668 and

~

B = 3.806.
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Estimating Model Parameters

A B C D | E
1 |alpha 1.000
2 |beta 1.000
3 [LL -2115.55
4
5 Year P(T=t) # Cust. # Lost
6 0 1000 |
7 1 05000 <-{=B1/(B1+B2)|[31  -90.8023
8 2_ 0.1667 743 126 -225.7617
o] (=87 (6B82+AG 2)(SBS1+5B521A81)| g5 {76743
11 5  0.0333 551 42 -142.8503
12 6  0.0238 517 34 -127.0808
13 7  0.0179 491 26 -104.6591
14 -1021.0058

29

Estimating Model Parameters

Solver Parameters
Set Target Cell: HEES |
Equal Ta: @max Omo  Ovaleof: |0
B Changing Cells:
fo1 ot
Subject ko the Constraints:
$B$1:4E42 >= 0.00001

4

Solve

Close

Options

Reset Al

Help
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Estimated Distribution of Churn Probabilities
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A Further Test of the sBG Model

- The dataset we have been analyzing is for a “high
end” segment of customers.

- We also have a dataset for a “regular” customer
segment.

- Fitting the sBG model to the data on contract
renewals for this segment yields & = 0.704 and
B =1.182 (= E(0) = 0.373).
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Retention Rate

Implied Retention Rates

- The retention rate for period t (7;) is defined as the

proportion of customers who had renewed their
contract at the end of period t — 1 who then renew
their contract at the end of period t:

_ P(T>1)
CP(T>t-1)
_ B+t-1
x4+ B+t-1°

Tt

- An increasing function of time, even though the

individual-level retention probability is constant.

- A sorting effect in a heterogeneous population.
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Projecting Retention Rates
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Concepts and Tools Introduced
- Probability models

- Maximum-likelihood estimation of model
parameters

- Modeling discrete-time (single-event) duration data

- Models of contract renewal behavior
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Further Reading

Buchanan, Bruce and Donald G. Morrison (1988), “A Stochastic
Model of List Falloff with Implications for Repeat Mailings,”
Journal of Direct Marketing, 2 (Summer), 7-15.

Fader, Peter S. and Bruce G.S. Hardie (2005), “A Simple
Probability Model for Projecting Customer Retention.”
[http://brucehardie.com/papers/021/]

Weinberg, Clarice Ring and Beth C. Gladen (1986), “The
Beta-Geometric Distribution Applied to Comparative
Fecundability Studies,” Biometrics, 42 (September), 547-560.
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Introduction to Probability Models

39

The Logic of Probability Models

- Many researchers attempt to describe/predict
behavior using observed variables.

- However, they still use random components in
recognition that not all factors are included in the
model.

- We treat behavior as if it were “random”

(probabilistic, stochastic).

- We propose a model of individual-level behavior
which is “summed” across individuals (taking
individual differences into account) to obtain a
model of aggregate behavior.
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Uses of Probability Models

- Understanding market-level behavior patterns

- Prediction

- To settings (e.g., time periods) beyond the

observation period

- Conditional on past behavior

- Profiling behavioral propensities of individuals

- Benchmarks/norms

(iii)

41

Building a Probability Model

Determine the marketing decision problem/
information needed.

Identify the observable individual-level behavior
of interest.

- We denote this by x.
Select a probability distribution that
characterizes this individual-level behavior.

- This is denoted by f(x|0).

- We view the parameters of this distribution
as individual-level latent characteristics.
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Building a Probability Model

(iv) Specify a distribution to characterize the
distribution of the latent characteristic
variable(s) across the population.

- We denote this by g(0).
- This is often called the mixing distribution.

(v) Derive the corresponding aggregate or observed
distribution for the behavior of interest:

Flx) = jf(xw)g(e)de

43

Building a Probability Model

(vi) Estimate the parameters (of the mixing
distribution) by fitting the aggregate
distribution to the observed data.

(vii) Use the model to solve the marketing decision
problem/provide the required information.
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Problem 1:

Problem 2:

Problem 3:

Problem 4:

Problem 5:

Problem 6:

Outline

Projecting Customer Retention Rates
(Modeling Discrete-Time Duration Data)

Predicting New Product Trial
(Modeling Continuous-Time Duration Data)

Estimating Billboard Exposures
(Modeling Count Data)

Test/Roll Decisions in Segmentation- based
Direct Marketing

(Modeling “Choice” Data)

Characterizing the Purchasing of Hard-Candy
(Introduction to Finite Mixture Models)

Who is Visiting khakichinos.com?
(Incorporating Covariates in Count Models)
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Problem 2:

Predicting New Product Trial

(Modeling Continuous-Time Duration Data)
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Background

Ace Snackfoods, Inc. has developed a new shelf-stable juice
product called Kiwi Bubbles. Before deciding whether or not to
“go national” with the new product, the marketing manager for
Kiwi Bubbles has decided to commission a year-long test market
using IRI’s BehaviorScan service, with a view to getting a clearer
picture of the product’s potential.

The product has now been under test for 24 weeks. On hand
is a dataset documenting the number of households that have
made a trial purchase by the end of each week. (The total size of
the panel is 1499 households.)

The marketing manager for Kiwi Bubbles would like a forecast
of the product’s year-end performance in the test market. First,
she wants a forecast of the percentage of households that will
have made a trial purchase by week 52.

47

Kiwi Bubbles Cumulative Trial
Week # Households Week # Households

1 8 13 68
2 14 14 72
3 16 15 75
4 32 16 81
5 40 17 90
6 47 18 94
7 50 19 96
8 52 20 96
9 57 21 96
10 60 22 97
11 65 23 97
12 67 24 101
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Cum. % Households Trying

Kiwi Bubbles Cumulative Trial

Week

49

Developing a Model of Trial Purchasing

- Start at the individual-level then aggregate.

Q: What is the individual-level behavior of
interest?

A: Time (since new product launch) of trial
purchase.

- We don’t know exactly what is driving the behavior

= treat it as a random variable.
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The Individual-Level Model

- Let T denote the random variable of interest, and t
denote a particular realization.

- Assume time-to-trial is distributed exponentially.

- The probability that an individual has tried by time
t is given by:

F(t)=P(T<t)=1—-—e M

- A represents the individual’s trial rate.

51

Distribution of Trial Rates

- Assume trial rates are distributed across the

population according to a gamma distribution:
oA 1 e—(xA
I'(r)

where 7 is the “shape” parameter and « is the
“scale” parameter.

g(A) =

- The gamma distribution is a flexible (unimodal)
distribution ...and is mathematically convenient.
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Illustrative Gamma Density Functions
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Market-Level Model

The cumulative distribution of time-to-trial at the
market-level is given by:

P(T<t)= JOOP(T <t|A) g(A) dA
0

-
(65
X+t

We call this the “exponential-gamma” model.
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Estimating Model Parameters

The log-likelihood function is defined as:

LL(r,x|data) =8 X In[P(0O<T <1)] +
6xXxIn[P(1<T<2)] +
+
4XIn[P(23 < T <24)]+
(1499 — 101) X In[P(T > 24)]

The maximum value of the log-likelihood function is
LL = —681.4, which occurs at ¥ = 0.050 and & = 7.973.
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Estimating Model Parameters

A | B | C D | E | F

1 [Product:  Kiwi Bubbles r 1.000
2 [Panelists: 1499 alpha 1.000
3 =SUM(F6:F30) |~ LL -4909.5
4 Cum_Trl

5 |Week # HHs Incr_Trl P(T <=t) P(try week t)

6 |=1 _(F$2/(F$2+A6))\F$1 |—%-' 0.50000 0.50000 -5.545
7 Z T4 6 0.66667 _ 0.16667 -10.751
8 3 16 2 OZ57Dgl . 0.08333 -4.970
9 4 32 16| Olowooo—  0.05000 / -47.932
10 5 40 8 0.83333 -27.210
11 6 47 7 0.85714 0.02381 -26.164
12 7 50 3 0.87500 0.01786 -12.076
13 8 52 2 0.88889 0.01389 -8.553
14 9 57 5 0.90000 0.01111  -22.499
15 10 60 3 0.90909 0.00909  -14.101
29~ 24 101 4 —cocnon™ — A An 167 -25.588
30 |=(B2-B29)"LN(1-D29) | = 4499 988
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Estimated Distribution of A

2.0

g@) 1.0 1

0.5

0.0 T T T T 1
0.0 0.1 0.2 0.3 0.4 0.5

57

Forecasting Trial

- F(t) represents the probability that a randomly
chosen household has made a trial purchase by time
t, where t = 0 corresponds to the launch of the new
product.

- Let T(t) = cumulative # households that have made
a trial purchase by time t:

E[T(t)] = N x E(t)

:N{l_ (ait)r} '

where N is the panel size.

- Use projection factors for market-level estimates.
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Cum. # Households Trying

Cumulative Trial Forecast
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Further Model Extensions
- Add a “never triers” parameter.
- Incorporate the effects of marketing covariates.

- Model repeat sales using a “depth of repeat”
formulation, where transitions from one repeat
class to the next are modeled using an “exponential-
gamma”-type model.
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Concepts and Tools Introduced

- Modeling continuous-time (single-event) duration
data

- Models of new product trial

61

Further Reading

Fader, Peter S., Bruce G.S. Hardie, and Robert Zeithammer
(2003), “Forecasting New Product Trial in a Controlled Test
Market Environment,” Journal of Forecasting, 22 (August),
391-410.

Hardie, Bruce G.S., Peter S. Fader, and Michael Wisniewski
(1998), “An Empirical Comparison of New Product Trial
Forecasting Models,” Journal of Forecasting, 17 (June-July),
209-229.

Kalbfleisch, John D. and Ross L. Prentice (2002), The Statistical
Analysis of Failure Time Data, 2nd edn., New York: Wiley.

Lawless, J.F. (1982), Statistical Models and Methods for
Lifetime Data, New York: Wiley.
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Problem 3:
Estimating Billboard Exposures

(Modeling Count Data)

63

Background

One advertising medium at the marketer’s disposal is the
outdoor billboard. The unit of purchase for this medium is
usually a “monthly showing,” which comprises a specific set of
billboards carrying the advertiser’s message in a given market.

The effectiveness of a monthly showing is evaluated in terms
of three measures: reach, (average) frequency, and gross rating
points (GRPs). These measures are determined using data
collected from a sample of people in the market.

Respondents record their daily travel on maps. From each
respondent’s travel map, the total frequency of exposure to the
showing over the survey period is counted. An “exposure” is
deemed to occur each time the respondent travels by a billboard
in the showing, on the street or road closest to that billboard,
going towards the billboard’s face.
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Background

The standard approach to data collection requires each
respondent to fill out daily travel maps for an entire month. The
problem with this is that it is difficult and expensive to get a high
proportion of respondents to do this accurately.

B&P Research is interested in developing a means by which it
can generate effectiveness measures for a monthly showing from
a survey in which respondents fill out travel maps for only one
week.

Data have been collected from a sample of 250 residents who
completed daily travel maps for one week. The sampling process
is such that approximately one quarter of the respondents fill out
travel maps during each of the four weeks in the target month.

65

Effectiveness Measures

The effectiveness of a monthly showing is evaluated in
terms of three measures:

- Reach: the proportion of the population exposed to
the billboard message at least once in the month.

- Average Frequency: the average number of
exposures (per month) among those people reached.

- Gross Rating Points (GRPs): the mean number of
exposures per 100 people.
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Distribution of Billboard Exposures (1 week)

# Exposures  # People # Exposures  # People
0 48 12 5
1 37 13 3
2 30 14 3
3 24 15 2
4 20 16 2
5 16 17 2
6 13 18 1
7 11 19 1
8 9 20 2
9 7 21 1

10 6 22 1
11 5 23 1

Average # Exposures = 4.456
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Modeling Objective

Develop a model that enables us to estimate a
billboard showing’s reach, average frequency,
and GRPs for the month using the one-week
data.
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Modeling Issues
- Modeling the exposures to showing in a week.

- Estimating summary statistics of the exposure
distribution for a longer period of time (i.e., one
month).

69

Model Development (I)

- Let the random variable X denote the number of

exposures to the showing in a week.

- At the individual-level, X is assumed to be Poisson
distributed with (exposure) rate parameter A:

AXe=A

P(X=xI|A) = por

- All individuals are assumed to have the same

exposure rate.
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Estimating Model Parameters

The log-likelihood function is defined as:

LL(A|data) =48 x In[P(X =0)]
37 XIn[P(X =1)]
30 X In[P(X = 2)]

+ + 4+ +

1 xXIn[P(X = 23)]
The maximum value of the log-likelihood function is

LL = —929.0, which occurs at A = 4.456.
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Estimating Model Parameters

A | B C D
1_[lambda 3.000
2 |LL -1005.8 <—{=SUM(D5:D28)||
3
4 X f_x P(X=x)
5 0 . 0.04979  -144.00
6 =POISSE)N($ FALSEIPS 799
7 o204 -44.88
8 3 24 020404  -35.90
9 4 |=B9*LN(C9) > -35.67
10 5 16] 0.10082  -36.71
11 6 13 0.05041  -38.84
12 7 11 0.02160  -42.18
13 8 9 0.00810  -43.34
4 27000270 _ -41.40
27 22 1 0.00000  -27.30
28 23 1_0.00000  -29.34
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Fit of the Poisson Model
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Model Development (II)

- Let the random variable X denote the number of

exposures to the showing in a week.

- At the individual-level, X is assumed to be Poisson
distributed with (exposure) rate parameter A:

AXe—A

P(X =x|A) =
x!

- Exposure rates (A) are distributed across the
population according to a gamma distribution:
.U 1 e—od\

I'(r)

gAlr,x) =
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Model Development (II)

The distribution of exposures at the population- level is
given by:

PX=x|r,x) = J P(X=x|A)gA|r,x)dA
0
_T(r +x) ( X )”( 1 )x
O T(r)x! \x+1 x+ 1
This is called the Negative Binomial Distribution, or
NBD model.
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Mean of the NBD

We can derive an expression for the mean of the NBD by
conditioning:

E(X) = E[E(X|A)]

= JOOE(XIA)g(AIT, ) dA
0
v

o
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Computing NBD Probabilities

- Note that

P(X = x) _r+x-—1
PX=x-1) x(x+1)

- We can therefore compute NBD probabilities using
the following forward recursion formula:

SN
((x+1> x=0
P(X =x) =1
rEX X =x-1) x=1
L x(x+1)
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Estimating Model Parameters
The log-likelihood function is defined as:
LL(r,x|data) =48 X In[P(X = 0)]

37 XIn[P(X =1)]
30 X In[P(X = 2)]

+ + + +

1 XIn[P(X = 23)]

The maximum value of the log-likelihood function is
LL = —649.7, which occurs at ¥ = 0.969 and & = 0.218.
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Estimating Model Parameters

A | B | ¢C D

r 1.000

alpha 1.000

LL -945.5 I=(BZ/(BQ+1))AB1 l:
X f_x \ll P(X=x)
0 48 0.50000 -33.27
1 37_ 0.25000 -51.29
) 20 N0 40500 -62.38

BNl alxlalRz3]e|e|~|o|o|s|w|r (=

[=C6*($B$1+A7-1)/(A7*($B$2+1)) |7_66_5 )
4 20 0.03125  -69.31

5 16 0.01563  -66.54

6 13 0.00781 -63.08

7 11 0.00391 -61.00

8 9 000195  -56.14

9 ____7 _000098 _ -48.52]
22 1~ 0.00000  -15.94

23 1 0.00000 -16.64
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Estimated Distribution of A




NBD for a Non-Unit Time Period

- Let X(t) be the number of exposures occuring in an
observation period of length ¢ time units.

- If, for a unit time period, the distribution of
exposures at the individual-level is distributed
Poisson with rate parameter A, then X (f) has a
Poisson distribution with rate parameter At:

(At)xe—i\t

P(X(t) =x|A) = o

81

NBD for a Non-Unit Time Period

- The distribution of exposures at the population-
level is given by:

PX(t) =x|7r,x) = JOOOP(X(t) =x|A)gA|lr,x)dA
CTr+x)( a« \'( t \*
 T(r)x! <o<+t> <o<+t>

- The mean of this distribution is given by

E[X(D)] = %t
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Exposure Distributions: 1 week vs. 4 week

90 -+
= ] week

O 4 week

60 -

# People

30 ~

0 2 4 6 8 10 12 14 16 18 20+

# Exposures
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Effectiveness of Monthly Showing
- For t = 4, we have:
- P(X(t) =0) = 0.056, and
- E[X(t)] =17.82
- It follows that:
- Reach=1-P(X(t) =0)
=94.4%

- Frequency = E[X(t)]/(1 — P(X(t) =0))
=18.9

- GRPs =100 X E[X(t)]
= 1782
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Concepts and Tools Introduced

- Counting processes

- The NBD model

- Extrapolating an observed histogram over time

- Using models to estimate “exposure distributions”
for media vehicles
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Further Reading

Ehrenberg, A.S.C. (1988), Repeat-Buying, 2nd edn., London:
Charles Griffin & Company, Ltd. (Available online at
<http://www.empgens.com/A/rb/rb.html>.)

Greene, Jerome D. (1982), Consumer Behavior Models for
Non-Statisticians, New York: Praeger.

Morrison, Donald G. and David C. Schmittlein (1988),
“Generalizing the NBD Model for Customer Purchases: What
Are the Implications and Is It Worth the Effort?” Journal of
Business and Economic Statistics, 6 (April), 145-159.
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Problem 4:

Test/Roll Decisions in
Segmentation-based Direct Marketing

(Modeling “Choice” Data)

87

The “Segmentation” Approach

i. Divide the customer list into a set of (homogeneous)
segments.

ii. Test customer response by mailing to a random
sample of each segment.

iii. Rollout to segments with a response rate (RR) above
some cut-off point,

cost of each mailing
unit margin

e.g., RR >
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Ben’s Knick Knacks, Inc.

- A consumer durable product (unit margin =
$161.50, mailing cost per 10,000 = $3343)

- 126 segments formed from customer database on
the basis of past purchase history information

- Test mailing to 3.24% of database

89

Ben’s Knick Knacks, Inc.

Standard approach:
- Rollout to all segments with

3343/10,000
Test RR > 16150 = 0.00207

- 51 segments pass this hurdle
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Test vs. Actual Response Rate

Rollout RR (%)

Test RR (%)
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Modeling Objective

Develop a model that leverages the whole data
set to make better informed decisions.
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Model Development

i. Assuming all members of segment s have the same
(unknown) response probability p;, X has a
binomial distribution:

m _
P(Xs = Xs|m5,ps) = (x5>19§“(1 — l’)s)ms XS;

s
with E(Xslms, 193) = M;Ps.

ii. Heterogeneity in p; is captured using a beta
distribution:
Pf‘_l(l - 193)‘8_1
B(«, B)

g(pS|0(5B) =

93

The Beta Binomial Model

The aggregate distribution of responses to a mailing of
size m; is given by

P(Xs = X5|7’l’l5 O(aB)

1
= JO P(Xs = xslmg, ps) g(ps | &, B) dps

_(mg\B(x+ x5, B+ m; — Xs)
o\ X, B(x, B)
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Estimating Model Parameters
The log-likelihood function is defined as:

126
LL(x, Bldata) = > In[P(X; = xs|ms, &, B)]
s=1
126 m! I(ax+x)I'(B+ms —x5) T+ B)
zszlln[(ms—xs)!xs!L I+ B +my) “F((X)F(B)J

B(otxe, f4mg—xs) 1/B(c,B)

The maximum value of the log-likelihood function is
LL = —200.5, which occurs at & = 0.439 and 8 = 95.411.

95

Estimating Model Parameters

A B | ¢ | b | E

1 |alpha 1.000 B(alpha,beta) 1.000
2 |beta 1.000 \

3 [LL -718.9 <—=SUM(E6:E131)|

4

5 | Segment m_s Xx_s| P(X=x|m)

6 1 34 Q. 0.02857  -3.555
7 an - . -4.635
5| | =COMBIN(B6,C6)EXP(GAMMALN(BS1 |, " coc
5 +C6)+GAMMALN(BS2+B6-C6)- [~ o)
o GAMMALN(B$1+B$2+B6))/E$1 s
11 6 144 7 0.00690  -4.977
12 7 1235 80 -7 7120
13 8 573 34ZLNOID | ¢ 353
14) ___3__108 _ _24 000092 _ -6.988
130 125 383 0 0.00260  -5.951
131 126 404 0 0.00247  -6.004
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Estimated Distribution of p

20

gp) 10 A

0 T T T T T T T T T 1
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0

p

& = 0.439, B = 95.411, p = 0.0046
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Applying the Model

What is our best guess of ps given a response of
X, to a test mailing of size m;?

Intuitively, we would expect

X X
E(ps|xs:ms)zwo( +(1—(L))—S

+B mg
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Bayes Theorem

- The prior distribution g(p) captures the possible
values p can take on, prior to collecting any
information about the specific individual.

- The posterior distribution g(p|x) is the conditional
distribution of p, given the observed data x. It
represents our updated opinion about the possible
values p can take on, now that we have some
information x about the specific individual.

- According to Bayes theorem:

f(xIp)g(p)
fxlp)g(p)dp

g(plx) = i
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Bayes Theorem

For the beta-binomial model, we have:

binomial beta

‘ N —A—
P(Xs = xslms, ps) g(ps)
1
JO P(Xs = xslmg, ps) g(ps) dps

g(ps|Xs = x5, myg) =

beta-binomial

1 x+xs—1 B+ms—xs—1
— N 1 _ s s
B(x + x5, B+ mg —xs)ps (1=ps)

which is a beta distribution with parameters « + x; and
B + mS - XS.
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Distribution of p
150 .,

—— prior (& = 0.439, § = 95.411)

— — posterior with x; = 80, ms = 1235

1004t e posterior with x; = 0, ms = 171
g(p)
| - p = 0.0604
50 4 /N
'-‘ p = 0.0046 / \
\ p =0.0016 / \
/ \
N
0 < . .
0 0.1 1
p
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Applying the Model

Recall that the mean of the beta distribution is
o/(x + B). Therefore

o+ X
X+ B+ mg

E(P5|Xs = xs,ms) =

which can be written as
x+ X N Mg Xs
x+pB+ms) x+ B x+ B +mg) mg

- a weighted average of the test RR (x;/m;) and the
population mean (x/(x + B)).

- “Regressing the test RR to the mean”
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Model-Based Decision Rule
- Rollout to segments with:

43/1
E(ps|Xs = x5, myg) > 33 ?éloéooo = 0.00207

- 66 segments pass this hurdle

- To test this model, we compare model predictions
with managers’ actions. (We also examine the
performance of the “standard” approach.)
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Results

Standard Manager Model

# Segments (Rule) 51 66
# Segments (Act.) 46 71 53
Contacts 682,392 858,728 732,675
Responses 4,463 4,804 4,582
Profit $492,651 $488,773 $495,060

Use of model results in a profit increase of $6287;
126,053 fewer contacts, saved for another offering.
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Concepts and Tools Introduced
- “Choice” processes
- The Beta Binomial model

- “Regression-to-the-mean” and the use of models to
capture such an effect

- Bayes theorem (and “empirical Bayes” methods)

- Using “empirical Bayes” methods in the
development of targeted marketing campaigns
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Further Reading

Colombo, Richard and Donald G. Morrison (1988),
“Blacklisting Social Science Departments with Poor Ph.D.
Submission Rates,” Management Science, 34 (June), 696-706.

Morrison, Donald G. and Manohar U. Kalwani (1993), “The
Best NFL Field Goal Kickers: Are They Lucky or Good?”
Chance, 6 (August), 30-37.

Morwitz, Vicki G. and David C. Schmittlein (1998), “Testing
New Direct Marketing Offerings: The Interplay of Management
Judgment and Statistical Models,” Management Science, 44
(May), 610-628.
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Problem 5:
Characterizing the Purchasing of Hard-Candy

(Introduction to Finite Mixture Models)

107

Distribution of Hard-Candy Purchases

# Packs # People # Packs # People

0 102 11 10
1 54 12 10
2 49 13 3
3 62 14 3
4 44 15 5
5 25 16 5
6 26 17 4
7 15 18 1
8 15 19 2
9 10 20 1
10 10

Source: Dillon and Kumar (1994)
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Fitting the NBD

0 2 4 6 8 10 12 14 16 18 20

# Packs

110

A B | ¢ [ D [ E T F T[T G T H ] [y
1] 0.998
2 |alpha 0.250
3 |LL -1140.02
4
5 # Packs Observed P(X=x) LL Expected # Packs | Observed Expected (O-E)\2/E
6 0 102 0.20073  -163.79 91.5 0 102 91.5 1.20
7 1 54 0.16021 -98.89 54 73.1 4.97
8 2 49 0.12802 -100.72 49 [=(H6-16)22/16| 1.51
9 3 62 0.10234  -141.32 62 46.7 5.04
10 4 44 0.08183 -110.14 44 37.3 1.20
11 5 25 0.06543 -68.17 25 29.8 0.78
12 6 26 0.05233 -76.71 26 23.9 0.19
13 7 15 0.04185 -47.60 15 19.1 0.87
14 8 15 0.03347 -50.96 15 15.3 0.00
15 9 10 0.02677 -36.20 10 12.2 0.40
16 10 10 0.02141 -38.44 10 9.8 0.01
17 11 10, 0.01713 -40.67 10 7.8 0.61
18 12 10, 0.01370 -42.90 10 6.2 2.25
19 13 3 0.01096 -13.54 3 5.0 0.80
20 14 3 0.00876 -14.21 3 4.0 0.25
21 15 5 0.00701 -24.80 18 11.8 3.27
22 16 5 0.00561 -25.92 23.35
23 17 4 0.00449 -21.63
24 18 1 0.00359 -5.63 # params 2
25 19 2 0.00287 -11.71 — df 13
26 20 1 0.00230 -6.08 =CHIDIST(J22,J25)
27 456 p-value 0.038
109
L]
Fit of the NBD
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The Zero-Inflated NBD Model

Because of the “excessive” number of zeros, let us
consider the zero-inflated NBD (ZNBD) model:

a proportion 1t of the population never buy
hard-candy

the visiting behavior of the “ever buyers” can be
characterized by the NBD model

P(X=x)=0x_0mm+ (1 —17)
><1"(1f+x) ( X >T< 1 )x
I'r)x! \x+1 x+1
This is sometimes called the “NBD with hard-core
non-buyers” model.
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Fitting the ZNBD

A [ B J ¢ [ b J E T F T G T H ] [ 0 [ K

1 ]r 1.504
[ 2 |alpha 0.334
| 3 |pi 0.113
4] -1136.17
5]
6| P(X=x)

7 # Packs Observed NBD ZNBD LL Expected # Packs = Observed Expected (O-E)"2/E
| 8| 0 102| 0.12468 0.22368 _ -152.75 102.0 0 102 102.0 0.00

9 1 54 0.14054 0.1246 =442 44 68 1 54 56.8 0.14
[10] 2 49 0.13188  0.11{=(A8=0)"B$3+(1-B$3)"C8 2 49 53.3 0.35
| 11] 3 62 0.11545 0.10239  -141.29 46.7 3 62 46.7 5.02
|12 ] 4 44 0.09743 0.08641 -107.74 39.4 4 44 39.4 0.54
| 13 ] 5 25 0.08039 0.07130 -66.02 325 5 25 325 1.74
| 14 | 6 26/ 0.06531 0.05793 -74.06 26.4 6 26 26.4 0.01
| 15| 7 15 0.05248  0.04654 -46.01 21.2 7 15 21.2 1.82
| 16 | 8 15 0.04181| 0.03708 -49.42 16.9 8 15 16.9 0.22
| 17 | 9 10 0.03309| 0.02935 -35.28 134 9 10 134 0.86
| 18| 10 10 0.02605 0.02311 -37.68 10.5 10 10 10.5 0.03
|19 ] 11 10 0.02042 0.01811 -40.11 8.3 11 10 8.3 0.37
| 20 | 12 10 0.01595/ 0.01415 -42.58 6.5 12 10 6.5 1.95
| 21| 13 3 0.01242 0.01101 -13.53 5.0 13 3 5.0 0.81
| 22 | 14 3/ 0.00964 0.00855 -14.28 3.9 14 3 3.9 0.21
| 23 | 15 5 0.00747 0.00663 -25.08 3.0 15+ 18 10.4 5.48
| 24 | 16 5 0.00578 0.00512 -26.37 2.3 19.54
| 25 | 17 4/ 0.00446 0.00395 -22.13 1.8
| 26 | 18 1 0.00343 0.00305 -5.79 1.4 # params 3
| 27 | 19 2/ 0.00264 0.00234 -12.11 1.1 df 12
| 28 | 20 1 0.00203 0.00180 -6.32 0.8

29 456 p-value 0.076
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Fit of the ZNBD

120 7

= Actual
90 ~ = ZNBD
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What is Wrong With the NBD Model?

The assumptions underlying the model could be wrong
on two accounts:

i. at the individual-level, the number of purchases is
not Poisson distributed

ii. purchase rates (A) are not gamma-distributed

114



Relaxing the Gamma Assumption

- Replace the continuous distribution with a discrete
distribution by allowing for multiple (discrete)
segments each with a different (latent) buying rate:

S S
P(X=x)=> mP(X=x|Ay), > m=1
s=1

s=1

- This is called a finite mixture model.

- We often reparameterize the mixing proportions for
computational convenience:

_ __ exp(bs)
Zi:l eXp(Qs')’

ju
A
Il

s
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Fitting the One-Segment Model

A B c | D

1 |lambda 3.991

2 |LL -1545.00

3 |

4 | #Packs Observed  P(X=x) LL
5 0 102,  0.01848  -407.11
6 1 54 0.07375 -140.78
7 2 49 0.14717 -93.89
8 3 62 0.19579  -101.10
9 4 44 0.19536 -71.85
0] ___5___.25 015505 4646
25 20 1 0.00000 -18.64
26 456
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Fitting the Two-Segment Model

A B | C D E F
1 {lambda_1 1.802
2 |lambda_2 9.121
3 |pi 0.701
4 |LL -1188.83
5
6 # Packs Observed Seg1 Seg2 P(X=x) LL
7 0 102, 0.16494 0.00011 0.11564 -220.04
8 |:PO|SSON(A7,B$1,FALSE) 25 0.00100%0.20864 4 -84.63
9 = ao—Tron/lK .00455|/ 0.189(=B7*LN(E7)
10 |=POISSON(A7,B$2,FALSE)|, a1ag2 | n 11671330
11 4 44 0.07249 O.E:B$3*C7+(1'B$3)*D7|23.61
121 __ 3 __.25 002613 005753 003552 _ -83.44
27 20 1/ 0.00000 0.00071 0.00021 -8.45
28 456
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Fitting the Two-Segment Model

Solver Parameters EJ
Set Target Cell:
Equal To: @ Max  OMn O valueof: |0 -

= = = Close
By Changing Cells: -
o1 40
Subject ko the Constrainks:
$E41: 4643 == 0.0001 -
e [ add |
Reset Al
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Fitting the Three-Segment Model

A B C D E F | G
1 |lambda_1 3.483
2 (lambda_2 11.216
3 |lambda_3 0.291
4 |theta_1 0.674 1.963 ~<—|=EXP(B4)
5 |theta_2 -0.430 0.650
6 |theta_3 0 1.000
7 |LL -1132.04 [=C4/SUM(C4:Cé)
8
9 0.543 © 0.180 0.277
10| # Packs| Observed Seg1 Seg2 Seg3 P(X=x) LL
11 0 102 0.03071) 0.00001 0.74786 0.22367 -152.76
12 1 54 0.10696/ 0.00015 0.21728/ 0.11827 -115.28
13 2 49 [=SUMPRODUCT(C$9:E$9,C11:E11)1009  -108.12
14 3 62 0.21629] 0.00317] 0.00306/ 0.11892 -132.02
15 4 44 0.18835 0.00887 0.00022 0.10399 -99.59
16 ___5___.25_013122| 001991 _0.00001__0.07487| _-64.80]
31 20 1 0.00000 0.00549 0.00000 0.00099 -6.92
32 456
119
Fitting the Three-Segment Model
Solver Parameters g
Set Target Cell: HEL? |
Equal To: @ Max  OMn O valueof: |0 -_
By Changing Cells: Closs
sob ot
Subject ko the Constrainks:
$E41: 4643 == 0.00001
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Fitting the Four-Segment Model

A | B | ¢ | o J e T F 1T ¢ | H
| 1 [lambda_1 3.002
| 2 [lambda_2 0.205
3 |lambda_3 7.418
| 4 |lambda_4 12.873
| 5 |theta_1 1.598 4.943
6 |theta_2 0.876 2.401
| 7 |theta_3 0.398 1.489
| 8 |theta_4 0 1.000
9 |LL -1130.07
| 10 |
[ 11] 0.503 0.244 0.151 0.102
12| # Packs Observed Seg1 Seg2 Seg3 Seg4 P(X=x) LL
[ 13] 0 102] 0.04969 0.81487| 0.00060 0.00000 0.22406 -152.58
[ 14 ] 1 54 0.14917 0.16683 0.00445 0.00003 0.11641 -116.14
[ 15] 2 49 0.22390 0.01708 0.01652 0.00021 0.11925  -104.20
[ 16| 3 62 0.22404 0.00117 0.04084 0.00091 0.11919 -131.88
[ 17 ] 4 44 0.16814 0.00006 0.07574 0.00294 0.09631 -102.97
18] ___5___.25_010095 000000 011237 000756 006853 _ -6701]
33 20 1 0.00000 0.00000 0.00006 0.01647 0.00168 -6.39
34 456

121
Parameter Estimates

Segl Seg?2 Seg3 Seg 4 LL

3.991 —1545.00
A 1.802 9.121 —1188.83
s, 0.701  0.299
A 0.291 3.483 11.216 —1132.04
e 0.277 0.543 0.180
As  0.205 3.002 7418 12.873 —-1130.07
e, 0.244 0.503 0.151 0.102
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How Many Segments?

- Controlling for the extra parameters,isan S + 1
segment model better than an S segment model?

- We can’t use the likelihood ratio test because its

properties are violated

- It is standard practice to use “information-
theoretic” model selection criteria

- A common measure is the Bayesian information
criterion:
BIC = —2LL + p In(N)

where p is the number of parameters and N is the
sample size

- Rule: choose S to minimize BIC
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Summary of Model Fit

Model LL # params BIC x° p-value
NBD —1140.02 2 2292.29 0.04
ZNBD -1136.17 3 2290.70 0.08
Poisson —1545.00 1 3096.12 0.00
2 seg Poisson —1188.83 3 2396.03 0.00
3 seg Poisson —1132.04 5 2294.70 0.22
4 seg Poisson —1130.07 7 2303.00 0.33

124



LatentGOLD Results

Seg1l Seg? Seg 3 Seg 4 LL
mean 3.991 —-1545.00
class size  1.000
mean 1.801 9.115 —1188.83
class size  0.700 0.300
mean 3.483 0.291 11.210 —-1132.04
class size 0.542 0.277  0.181
mean 2.976  0.202 7.247 12.787 —-1130.07

class size 0.500 0.243 0.156 0.106
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Fit of the Three-Segment Poisson Model

120 q

= Actual
90 A o Model

60 -

# People

30 ~
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Implied Heterogeneity Distribution

3 Seg Poisson ZNBD
1.0 4 A
g) 0.5
OO T T T T T 1 T T T T T 1
0 2 4 6 8 10 12 0 2 4 6 8 10 12
A A

71 =0.113,7 = 1.504, & = 0.334

127

Classification Using Bayes Theorem

To which “segment” of the mixing distribution does
each observation x belong?

- 11, can be interpreted as the prior probability of A
- By Bayes theorem,

Z§’=1 P(X =x|As)TTs ’

Ps| X=x)=

which can be interpreted as the posterior
probability of A
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Posterior Probabilities

1.00 - S
~ -
\ 7/
= 0.80 - \ J —— Segment 1
S \\ I/ — — Segment 2
= 0.60 v - Segment 3
b !
e A
o 0.40 - A
c 1
S PR
v 1
0 / \
= 0.20 A / \
\
000 T T T T T T |\ 1 1 T T T T T T T
6 8 10 12 14 16 18 20
# Packs
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Conditional Expectations

What is the expected purchase quantity over the next
month for a customer who purchased seven packs last
week?

E[X(4)] =E[X(4)|seg1]P(segl|X =7)
+ E[X(4)|seg 2] P(seg 2| X =7)
+ E[X(4)|seg 3] P(seg 3| X =7)
= (4 x 0.291) x 0.0000
+ (4 x 3.483) x 0.6575
+ (4 x11.216) x 0.3425
=24.5

.. or 13.9 with “hard assignment” to segment 2.
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Concepts and Tools Introduced
- Finite mixture models
- Discrete vs. continuous mixing distributions

- Probability models for classification
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Further Reading

Dillon, Wiliam R. and Ajith Kumar (1994), “Latent Structure
and Other Mixture Models in Marketing: An Integrative Survey
and Overview,” in Richard P. Bagozzi (ed.), Advanced Methods
of Marketing Research, Oxford: Blackwell.

McLachlan, Geoffrey and David Peel (2000), Finite Mixture
Models, New York: John Wiley & Sons.

Wedel, Michel and Wagner A. Kamakura (2000), Market
Segmentation: Conceptual and Methodological Foundations,
2nd edn., Boston, MA: Kluwer Academic Publishers.
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Problem 6:
Who is Visiting khakichinos.com?

(Incorporating Covariates in Count Models)

133

Background

Khaki Chinos, Inc. is an established clothing catalog company
with an online presence at khakichinos.com. While the company
is able to track the online purchasing behavior of its customers, it
has no real idea as to the pattern of visiting behaviors by the
broader Internet population.

In order to gain an understanding of the aggregate visiting
patterns, some Media Metrix panel data has been purchased. For
a sample of 2728 people who visited an online apparel site at
least once during the second-half of 2000, the dataset reports
how many visits each person made to the khakichinos.com web
site, along with some demographic information.

Management would like to know whether frequency of visiting
the web site is related to demographic characteristics.
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Raw Data

ID #Visits In(Income) Sex In(Age) HH Size

Number of People

1 0 11.38 1 3.87 2
2 5 9.77 1 4.04 1
3 0 11.08 0 3.33 2
4 0 10.92 1 3.95 3
5 0 10.92 1 2.83 3
6 0 10.92 0 2.94 3
7 0 11.19 0 3.66 2
8 1 11.74 0 4.08 2
9 0 10.02 0 4.25 1
135

Distribution of Visits

2000 A
1500 A
1000 A

500 -

o 1 2 3 4 5 6 7 8 9 10+

Number of Visits
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Modeling Count Data
Recall the NBD:

- At the individual-level, Y ~ Poisson(A)

- A is distributed across the population according to a
gamma distribution with parameters » and «

P(Y =y) = rﬁ:);g) (ai 1>T ((Xil)y
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Observed vs. Unobserved Heterogeneity
Unobserved Heterogeneity:
- People differ in their mean (visiting) rate A

- To account for heterogeneity in A, we assume it is
distributed across the population according to some
(parametric) distribution

- But there is no attempt to explain how people differ in
their mean rates

Observed Heterogeneity:

- We observe how people differ on a set of observable
independent (explanatory) variables

- We explicitly link an individual’s A to her observable
characteristics
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The Poisson Regression Model

- Let the random variable Y; denote the number of
times individual i visits the site in a unit time period

- At the individual-level, Y; is assumed to be
distributed Poisson with mean A;:

AY e Ai

P(Y; = y|A;) = i

- An individual’s mean is related to her observable

characteristics through the function

Ai = Ao exp(B'x;)
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Fit of the Poisson Model

2000 A

B Actual
1500 A O Poisson
1000 A

Number of People

500 A
0 - ﬂ_-/j-l_l_l— T T T T -

Number of Visits

A =0.949,LL = —6378.6
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Fitting the Poisson Regression Model

A [ B Jc] b [T E T F T 6 T H 1] I J
1 |Nambda_ 0 0.0439 LL -6291.497
2_[B.inc 0.0938  [_TRANSPOSE(B2:B5)}|
3 [B_sex 0.0043 T
4 |B_age 0.5882
5 |B_size -0.0359
6 0.0938  0.0043] 05882  -0.0359
7
8 ID Total Income Sex Age HHSize, lambda P(Y=y) In[P(Y=y)]
9 1 0 11.38 1 3.87 2 116317 0.31249  -1.163
1? g |=B$1"EXP(SUMPRODUCT(D$6:G$6,09:G9)) [, g):gégg? 8:223223
12 4 0 10.92 1 |=H9"B9*EXP(-H9)/FACT(BY)| 0.324307 -T.126
13 5 0 10.92 1 2383 3] 058338 055801  -0.583
14 6 0 10.92 0 2.94 3| 062017 053785  -0.620
15 7 0 11.19 0 3.66 2 1.00712 036527  -1.007
16 8 1 11.74 0 4.08 2 1.35220 0.34977  -1.050
17 9 0 10.02 0 4.25 1 1.31954 026726  -1.320
8] ___lo___ 0 __ 1092 __0_ _ 38 __ 3 10565 034765 1057
2735 2727 0 10.53 1 2.89 4] 056150 0.57035 0.561
2736 2728 0 11.74 1 2.83 3 0.63010 0.53254 0.630
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Poisson Regression Results

Variable Coefficient
Ao 0.0439
Income 0.0938
Sex 0.0043
Age 0.5882
HH Size —0.0359

LL —6291.5

LL poiss —6378.6

LR (df = 4) 174.2
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Comparing Expected Visit Behavior

Person A Person B
Income 59,874 98,716

Sex M F
Age 55 33
HH Size 4 2

Who is less likely to have visited the web site?

Aa = 0.0439 x exp (0.0938 x In(59,874) + 0.0043 x 0
+0.5882 x In(55) — 0.0359 x 4)
=1.127
Ap = 0.0439 x exp (0.0938 x In(98,716) + 0.0043 x 1

+0.5882 x In(33) — 0.0359 x 2)
= 0.944
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Is B Different from 0?
Consider two models, A and B:

If we can arrive at model B by placing k
constraints on the parameters of model A, we
say that model B is nested within model A.

The Poisson model is nested within the Poisson
regression model by imposing the constraint g = 0.

We use the likelihood ratio test to determine whether
model A, which has more parameters, fits the data
better than model B.
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The Likelihood Ratio Test

- The null hypothesis is that model A is not different
from model B

- Compute the test statistic

LR = —2(LLg — LL,)

- Reject null hypothesis if LR > x5,
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Computing Standard Errors

- Excel

- indirectly via a series of likelihood ratio tests
- easily computed from the Hessian matrix

(computed using difference approximations)
- General modeling environments (e.g., MATLAB,
Gauss)

- easily computed from the Hessian matrix (as a
by-product of optimization or computed using
difference approximations)

- Advanced statistics packages (e.g., Limdep, R, S-Plus)
- they come for free
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S-Plus Poisson Regression Results

Coefficients:
Value Std. Error t value
(Intercept) -3.126238804 0.40578080 -7.7042552
Income 0.093828021 0.03436347 .7304580
Sex 0.004259338 0.04089411 0.1041553
Age 0.588249213 0.05472896 10.7484079
HH Size -0.035907406 0.01528397 -2.3493511

N
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Limdep Poisson Regression Results

fmm————— o - o - fm————— +
|[Variable | Coefficient | Standard Error |b/St.Er.|
fomm - o o R +
Constant -3.122103284 .40565119 -7.697
INCOME .9305546493E-01 .34332533E-01 2.710
SEX .4312514407E-02 .40904265E-01 .105
AGE .5893014445 .54790230E-01 10.756

HH SIZE -.3577795361E-01 .15287122E-01 -2.340
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Fit of the Poisson Regression
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The ZIP Regression Model

Because of the “excessive” number of zeros, let us
consider the zero-inflated Poisson (ZIP) regression
model:

- a proportion 1t of those people who go to online
apparel sites will never visit khakichinos.com

- the visiting behavior of the “ever visitors” can be
characterized by the Poisson regression model

P(Yi=y)=0y-0om+ (1 -1)
[7\0 eXp(B’Xi)]ye—Ao exp(B'x;)

X
y!
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Fitting the ZIP Regression Model

A [ B Jc] D ] [ F T & [ H I J

1 |lambda_0|  6.6231 LL -4297.472

2 |pi 0.7433

3 |B_inc -0.0891

4 |B_sex -0.1327

5 |B_age 0.1141

6 |B_size 0.0196

7 -0.0891 -0.1327  0.1141] 0.0196

8

9 ID Total Income Sex Age HHSize lambda P(Y=y) In[P(Y=y)]

10 1 0 11.38 1 3.87 2| 3.40193 0.75184 -0.285

11 2 5 9.77 1 4.04 1| 3.92698 / 0.03936 -3.235

12 3 0 [=IF(B10=0,B$2,0)+(1-B$2)"H10"B10*EXP(-H10)/FACT(B10)|2 -0.289

13 4 0 T10.92 T 3.95 3 3.64889 U.74996 -0.288

14 5 0 10.92 1 2.83 3 3.21182 0.75363 -0.283

15 6 0 10.92 0 2.94 3| 3.71435 0.74954 -0.288

16 7 0 11.19 0 3.66 2 3.85775 0.74871 -0.289

17 8 1 11.74 0 4.08 2 3.85266 0.02099 -3.864

18 9 0 10.02 0 4.25 1 4.48880 0.74617 -0.293

19 10 0 1092 0 __38 3 411879 074746 _ -0291)
2736] 2727] 0 | 1053 1 2.89 4~ 341119  0.75176 0.285
2737 2728 0 11.74 1 2.83 3 298515 0.75626 0.279
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ZIP Regression Results

Variable Coefficient
Ao 6.6231
Income —0.0891
Sex -0.1327
Age 0.1141
HH Size 0.0196
T 0.7433

LL —4297.5

LL poiss reg —6291.5

LR (df =1) 3988.0
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Fit of the ZIP Regression

2000 A
o W Actual
S 1500 - O ZIP reg.
&
G
~ 1000 A
()
o]
&
2 500 -
0 - %
0 1 2 3 4 5 6 7 8 9 10+

Number of Visits

153

NBD Regression

The explanatory variables may not fully capture the
differences among individuals

To capture the remaining (unobserved) component of
differences among individuals, let Ay vary across the
population according to a gamma distribution with
parameters v and «:

I'(r+y) x " expBx) \
F(r)y! \«+exp(B'x;) « + exp(B'x;)

P(Yi=y) =

- Known as the “Negbin II” model in most textbooks

- Collapses to the NBD when g =0
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Fitting the NBD Regression Model

A B [c] b [ E [ F G [ H I J
1 0.1388 LL -2888.966
2 |alpha 8.1979
3_|B_inc 0.0734
4 |B_sex -0.0093
5 |B_age 0.9022
6 |B_size -0.0243
7 0.0734  -0.0093] 0.9022 -0.0243
8
9 ID Total Income Sex Age HHSize exp(BX) P(Y=y)| In[P(Y=y)]
10 1 0 11.38 1 3.87 2 7151161 072936  -0.316
11 2 5 9.77 1 4.04 1/ 76.02589 /0.01587  -4.143
12 3 0 [=EXP(SUMPRODUCT(D$7:G$7,010:G10))[+3-42559 /. 0.77467  -0.255
13 4 0 oo . o o-72.50603/ 0.72810  -0.317
14 5 0 10.92 1 =EXP(GAMMALN(B$1+B10)-
15 6 Y 10.92 0 |GAMMALN(B$1))/FACT(B10)*(B$2/(B$2+H10))"B$1*
16 7 0 11.19 0 (H10/(B$2+H10))"B10
17 8 1 11.74 0 — S A - —
18 9 0 10.02 0 4.25 1 94.07931 070456  -0.350
19 10 0 1092 0 __38 ___ 3 6680204 073555 _-0.307
2736|2727 0 | 1053 1 2.89 4 26.42093 0.81883 0.200
2737 2728 0 11.74 1 2.83 3| 28.08647 _ 0.81351 0.206
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NBD Regression Results

Variable Coefficient
v 0.1388
X 8.1979
Income 0.0734
Sex —0.0093
Age 0.9022
HH Size —-0.0243
LL —2889.0
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S-Plus NBD Regression Results

Coefficients:
Value Std. Error t value
(Intercept) -4.047149702 1.10159557 -3.6738979
Income 0.074549233 0.09555222 0.7801936
Sex -0.005240835 0.11592793 -0.0452077
Age 0.889862966 0.14072030 6.3236289
HH Size -0.025094493 0.04187696 -0.5992435

Theta: 0.13878
Std. Err.: 0.00726
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Limdep NBD Regression Results

Fom———— e - o +
|[Variable | Coefficient | Standard Error |b/St.Er.|
fmm - - - o +
Constant -4.077239653 1.0451741 -3.901
INCOME .7237686001E-01 .76663437E-01 .944
SEX -.9009160129E-02 .11425700 -.079
AGE .9045111135 .17741724 5.098
HH SIZE -.2406546843E-01 .38695426E-01 -.622
Overdispersion parameter
Alpha 7.206708844 .33334006 21.620
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Number of People

Summary of Regression Results

Variable Poisson ZIP NBD
Ao 0.0439 6.6231

v 0.1388
X 8.1979
Income 0.0938 -0.0891 0.0734
Sex 0.0043 -0.1327 -0.0093
Age 0.5882 0.1141 0.9022
HH Size -0.0359 0.0196 —-0.0243
e 0.7433

LL —-6291.5 —-4297.5 -2889.0
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Fit of the NBD Regression
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Fit of the NBD
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¥ =0.134, & = 0.141,LL = -2905.6
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Concepts and Tools Introduced
- Incorporating covariate effects in count models
- Poisson (and NBD) regression models

- The possible over-emphasis of the value of
covariates
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Further Reading

Cameron, A. Colin and Pravin K. Trivedi (1998), Regression
Analysis of Count Data, Cambridge: Cambridge University
Press.

Wedel, Michel and Wagner A. Kamakura (2000), Market
Segmentation: Conceptual and Methodological Foundations,
2nd edn., Boston, MA: Kluwer Academic Publishers.

Winkelmann, Rainer (2003), Econometric Analysis of Count
Data, 4th edn., Berlin: Springer.

163

Introducing Covariates: The General Case

- Select a probability distribution that characterizes the
individual-level behavior of interest:

f(16:)

- Make the individual-level latent characteristic(s) a
function of (time-invariant) covariates:

0; = s(60,%x;)

- Specify a mixing distribution to capture the
heterogeneity in 0; not “explained” by x;

- Derive the corresponding aggregate distribution

Foyix:) = jf(ywo,xi)g(eo) 6,
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Covariates in Timing Models

- If the covariates are time-invariant, we can make A a

direct function of covariates:

F(t)=1- e—AoeXp(ﬁ'Xi)t

- If the covariates are time-varying (i.e., X;;), we

incorporate their effects via the hazard rate function
F(t) =1 — e 04®

where A(t) = 2321 eXp(ﬁlxij)

- Known as “proportional hazards regression”

Cum. # Households Trying
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Comparing EG with EG+cov
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Covariates in “Choice” Models
Two options for binary choice:

- The beta-logistic model

- a generalization of the beta-binomial model in
which the mean is made a function of (time-
invariant) covariates

- covariate effects not introduced at the level of
the individual

- Finite mixture of binary logits:

oy exp(Bxy)
PY =1) = exp(B'x;) + 1

with some elements of B varying across segments
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Discussion
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Recap

- The preceding six problems introduce simple
models for three behavioral processes:

- Timing — “when”

- Counting — “how many”

- “Choice” — “whether/which”

- Each of these simple models has multiple
applications.

- More complex behavioral phenomena can be
captured by combining models from each of these
processes.
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Further Applications: Timing Models
- Repeat purchasing of new products

- Response times:
- Coupon redemptions
- Survey response

- Direct mail (response, returns, repeat sales)

- Other durations:

- Salesforce job tenure
- Length of web site browsing session
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Further Applications: Count Models
- Repeat purchasing

- Customer concentration (“80/20” rules)

- Salesforce productivity/allocation

- Number of page views during a web site browsing
session
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Further Applications: “Choice” Models

- Brand choice

A B A A
HH #1 — >
: B :

HH #2 — -
: B A :

HH #3 — -
: i A B B B i
HH #h — —

- Media exposure

- Multibrand choice (BB — Dirichlet Multinomial)
- Taste tests (discrimination tests)

- “Click-through” behavior
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Integrated Models
- Counting + Timing
- catalog purchases (purchasing | “alive” & “death” process)

- “stickiness” (# visits & duration/visit)

- Counting + Counting

- purchase volume (# transactions & units/transaction)
- page views/month (# visits & pages/visit)

- Counting + Choice

- brand purchasing (category purchasing & brand choice)
- “conversion” behavior (# visits & buy/not-buy)
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A Template for Integrated Models

Stage 2
Counting Timing Choice

Counting

Stage 1 Timing

Choice
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The Excel spreadsheets associated with this tutorial,
along with electronic copies of the tutorial materials,
can be found at:

http://brucehardie.com/talks.html
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