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Customer-Base Analysis
- Faced with a customer transaction database, we may
wish to determine

- which customers are most likely to be active in the
future,

- the level of transactions we could expect in future
periods from those on the customer list, both
individually and collectively, and

- individual customer lifetime value (CLV).

- Forward-looking/predictive versus descriptive.

Comparison of Modelling Approaches

Traditional approach
future = f(past)

Past : Future

latent
characteristics

(0)

Probability modelling approach
0 = f(past) — future = f(0)



Classifying Analysis Settings

Consider the following two statements regarding the size of a
company’s customer base:

- Based on numbers presented in a January 2008 press
release that reported Vodafone Group Plc’s third quarter
key performance indicators, we see that Vodafone UK has
7.3 million “pay monthly” customers.

- In his “Q4 2007 Financial Results Conference Call”, the CFO
of Amazon made the comment that “[a]ctive customer
accounts exceeded 76 million, up 19%” where alive customer
accounts represent customers who ordered in the past year.

Classifying Analysis Settings

- It is important to distinguish between contractual and
noncontractual settings:

- In a contractual setting, we observe the time at
customers become inactive.

- In a noncontractual setting, the time at which a customer
becomes inactive is unobserved.

- The challenge of noncontractual markets:

How do we differentiate between those customers
who have ended their relationship with the firm
versus those who are simply in the midst of a long
hiatus between transactions?



Classifying Analysis Settings
Consider the following four specific business settings:
- Airport VIP lounges
Electrical utilities
- Academic conferences

Mail-order clothing companies.

Classifying Customer Bases

Grocery purchases Credit card

Continuous Doctor visits Student mealplan

Hotel stays Mobile phone usage
Opportunities for
Transactions
Event attendance Magazine subs

Discrete Prescription refills Insurance policy

Charity fund drives Health club m’ship

Noncontractual Contractual

Type of Relationship With Customers



The Right Way to Think About Computing
Customer Lifetime Value

Calculating CLV

Customer lifetime value is the present value of the future
cash flows associated with the customer.

- A forward-looking concept

- Not to be confused with (historic) customer
profitability
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Calculating CLV

Standard classroom formula:

T Tt
CLV = gom—(l A
where m = net cash flow per period (if active)
¥ = retention rate
d = discount rate
T = horizon for calculation
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Calculating E(CLV)

A more correct starting point:

E(CLV) = JOOE[v(t)]S(t)d(t)dt
0

where E[v(t)] expected value (or net cashflow) of the

customer at time t (if active)

S(t) = the probability that the customer has
remained active to at least time ¢
d(t) = discount factor that reflects the

present value of money received at
time t

12



Calculating E(CLV)
- Definitional; of little use by itself.

- We must operationalize E[v (t)], S(t), and d(t) in a
specific business setting ... then solve the integral.

- Important distinctions:

- Expected lifetime value of an as-yet-to-be-acquired
customer

- Expected lifetime value of a just-acquired customer

- Expected residual lifetime value, E(RLV), of an
existing customer
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Calculating E(CLV)

- The expected lifetime value of an as-yet-to-be-acquired
customer is given by

E(CLV) = JOOOE[v(t)]S(t)d(t)dt

- Standing at time T, the expected residual lifetime value
of an existing customer is given by

E(RLV) = J:E[v(t)]S(t 't > T)d(t — T)dt

14



Review of Probability Models

15

The Logic of Probability Models

- Many researchers attempt to describe/predict behavior
using observed variables.

- However, they still use random components in
recognition that not all factors are included in the
model.

- We treat behavior as if it were “random” (probabilistic,
stochastic).

- We propose a model of individual-level behavior which
is “summed” across heterogeneous individuals to
obtain a model of aggregate behavior.

16



Building a Probability Model

(i) Determine the marketing decision problem/
information needed.

(i) Identify the observable individual-level behavior of
interest.

- We denote this by x.

(iii) Select a probability distribution that characterizes
this individual-level behavior.

- This is denoted by f(x|0).

- We view the parameters of this distribution as
individual-level latent traits.

17

Building a Probability Model

(iv) Specify a distribution to characterize the
distribution of the latent trait variable(s) across
the population.

- We denote this by g(0).

- This is often called the mixing distribution.

(v) Derive the corresponding aggregate or observed
distribution for the behavior of interest:

Flx) = Jf<x|0>g<0> 40

18



Building a Probability Model

(vi) Estimate the parameters (of the mixing
distribution) by fitting the aggregate distribution
to the observed data.

(vii) Use the model to solve the marketing decision
problem/provide the required information.

19

“Classes” of Models

- We focus on three fundamental behavioral processes:
- Timing — “when”

- Counting — “how many”

- “Choice” — “whether/which”

- Our toolkit contains simple models for each behavioral
process.

- More complex behavioral phenomena can be captured
by combining models from each of these processes.

20



Individual-level Building Blocks

Count data arise from asking the question, “How many?”.
As such, they are non-negative integers with no upper
limit.

Let the random variable X be a count variable:

X is distributed Poisson with mean A if

AXe—A

P(X=x|A) =
x!

, x=0,1,2,...

21

Individual-level Building Blocks

Timing (or duration) data are generated by answering
“when” and “how long” questions, asked with regards to a
specific event of interest.

The models we develop for timing data are also
used to model other non-negative continuous
quantities (e.g., transaction value).

Let the random variable T be a timing variable:

T is distributed exponential with rate parameter A if

F(t|A)=P(T<t|A)=1—-e t>0.

22



Individual-level Building Blocks

A Bernoulli trial is a probabilistic experiment in which
there are two possible outcomes, ‘success’ (or ‘1’) and
‘failure’ (or ‘0’), where 0 is the probability of success.

Repeated Bernoulli trials lead to the geometric and
binomial distributions.

23

Individual-level Building Blocks

Let the random variable X be the number of independent
and identically distributed Bernoulli trials required until
the first success:

X is a (shifted) geometric random variable, where
P(X=x10)=0(1-0)""1, x=1,2,3,...
The (shifted) geometric distribution can be used to model

either omitted-zero class count data or discrete-time
timing data.

24



Individual-level Building Blocks

Let the random variable X be the total number of
successes occurring in n independent and identically
distributed Bernoulli trials:

X is distributed binomial with parameter 6, where

P X=x|n,0) = (Z)QX(I—Q)""C, x=0,12,...,n.

We use the binomial distribution to model repeated choice

data— answers to the question, “How many times did a
particular outcome occur in a fixed number of events?”

25

Capturing Heterogeneity in Latent Traits

The gamma distribution:

O(TAT—Ie—O(?\

- I'(+) is the gamma function

- v is the “shape” parameter and « is the “scale”
parameter

- The gamma distribution is a flexible (unimodal)
distribution ... and is mathematically convenient.

26



Illustrative Gamma Density Functions

1.5 5 1.5 9 _
I\
Y
[
! \
! \
1.0 1.0 41\
i \
g@) Y
I/ ™
0.5 T 0.5 4! NN
) / e
d N ~N
', \\ ~
0.0 0.0 e T =
0 0 1 2 3
A A
r=05a0=1 r=2,x=1
—— — r=lLa=1 - — — r=2,x=
——————— r=2,ua=1 smme--s T =2,=4

27

Capturing Heterogeneity in Latent Traits

The beta distribution:

0l -0)F!
g0 B) = B B) ,0<0<1.

- B(«, B) is the beta function, which can be expressed in

terms of gamma functions:

_ T'(e)I'(B)
Blew ) = I'(ex+ B)

The beta distribution is a flexible distribution ... and is

mathematically convenient
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Illustrative Beta Density Functions
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The Negative Binomial Distribution (NBD)

- The individual-level behavior of interest can be
characterized by the Poisson distribution when the
mean A is known.

- We do not observe an individual’s A but assume it is
distributed across the population according to a
gamma distribution.

P(szlr,(x)=JOOP(X=x|A)g(A|r,0()dA
0
CTr+x)( o« \'( 1 \*
- T(r)x! <a+1) <a+1) '
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The Negative Binomial Distribution (NBD)

- Let the random variable X (t) be the count of events
occurring in the interval (0, t].

- If X(1) is distributed Poisson with mean A, then X (t)
has a Poisson distribution with mean At.

- Assuming A is distributed across the population
according to a gamma distribution,

PX(t)=x|7r,x) = JOOOP(X(t) =x|A)gA|r,x)dA
CTr+x)( @« \'( t ¥
 T(r)x! (a+t> <a+t) '
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The Exponential-Gamma Model
(Pareto Distribution of the Second Kind)

- The individual-level behavior of interest can be
characterized by the exponential distribution when the
rate parameter A is known.

- We do not observe an individual’s A but assume it is
distributed across the population according to a
gamma distribution.

F(t|r,x) =J:F(t|2\)g(2\|r,0()d2\

|
()
X+t

32




The Shifted-Beta-Geometric Model

- The individual-level behavior of interest can be
characterized by the (shifted) geometric distribution
when the parameter 0 is known.

- We do not observe an individual’s 0 but assume it is
distributed across the population according to a beta
distribution.

1
P(X = x| & B) =j0P<X=x|e>g<e|o<,3>de

_Blx+1,B+x-1)
- B(«, B)
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The Beta-Binomial Distribution

- The individual-level behavior of interest can be
characterized by the binomial distribution when the
parameter 0 is known.

- We do not observe an individual’s 0 but assume it is
distributed across the population according to a beta
distribution.

1
P(szln,a,ﬁ):JOP(X:x|n,0)g(0|o<,B)d0
_ (n)B(a+x,B+n—x)

b'e B(«x, B)
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Summary of Probability Models

Phenomenon Individual-level Heterogeneity = Model
Counting Poisson gamma NBD
Timing exponential gamma EG (Pareto)
Discrete timing shifted- beta sBG
(or counting) geometric
Choice binomial beta BB
35
Integrated Models

- Counting + Timing

- catalog purchases (purchasing | “alive” & “death” process)

- “stickiness” (# visits & duration/visit)

- Counting + Counting

- purchase volume (# transactions & units/transaction)

- page views/month (# visits & pages/visit)

- Counting + Choice

- brand purchasing (category purchasing & brand choice)

- “conversion” behavior (# visits & buy/not-buy)

36



A Template for Integrated Models

Stage 2
Counting  Timing Choice
Counting
Stage 1  Timing
Choice
37
Integrated Models

- The observed behavior is a function of sub-processes
that are typically unobserved:

f(x161,02) = g(fi(x1161), fa(x21602)).

- Solving the integral
Flx) = J F(x161,0:)91(61)g2(6) A6, d6,

often results in an intermediate result of the form
1

= constant X J t9(1 — t)P(u +vt)=cdt
0

38



The “Trick” for Integrated Models

Using Euler’s integral representation of the Gaussian
hypergeometric function, we can show that

1
J t%(1 - t)? (u + vt)~cdt
0

Ba+1,b+1)u°
XoFi(c,a+La+b+2;-7), lvl<su

Ba+1,b+1)(u+v)°¢

A

=), vl=zu

XFi(c,b+1l,a+b +2

.

where »F; (-) is the Gaussian hypergeometric function.
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The Gaussian Hypergeometric Function

Fia,biciz) = sy Har MBS 2
j=0

T(a)T (b Tc+j) !

Easy to compute, albeit tedious, in Excel as
oFi(a,b;c;z) = ) u;
j=0

using the recursion

uj (a+j-1)b+j-1)
Ujq (c+j—-1)j

z,j=12,3,...

where 1y = 1.
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Models for Contractual Settings

41

Classifying Customer Bases

Grocery purchases Credit card

Continuous Doctor visits Student mealplan

Hotel stays Mobile phone usage
Opportunities for
Transactions
Event attendance Magazine subs

Discrete Prescription refills Insurance policy

Charity fund drives Health club m’ship

Noncontractual Contractual

Type of Relationship With Customers
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SUNIL GUPTA, DONALD R. LEHMANN, and JENNIFER AMES STUART*

It is increasingly apparent that the financial value of a firm depends on
off-balance-sheet intangible assets. In this article, the authors focus on
the most critical aspect of a firm: its customers. Specifically, they demon-
strate how valuing customers makes it feasible to value firms, including
high-growth firms with negative earnings. The authors define the value of
a customer as the expected sum of discounted future earnings. They
demonstrate their valuation method by using publicly available data for
five firms. They find that a 1% improvement in retention, margin, or acqui-
sition cost improves firm value by 5%, 1%, and .1%, respectively. They
also find that a 1% improvement in retention has almost five times greater
impact on firm value than a 1% change in discount rate or cost of capital.
The results show that the linking of marketing concepts to shareholder

value is both possible and insightful.

Valuing Customers

43

Hypothetical Contractual Setting

# Customers 2003 2004 2005 2006 2007

New 10,000 10,000 10,000 10,000 10,000
End of year 10,000 16,334 20,701 23,965 26,569

44



Hypothetical Contractual Setting
Assume

- Each contract is annual, starting on January 1 and
expiring at 11:59pm on December 31.

- An average net cashflow of $100/year.
- A 10% discount rate

What is the expected residual value of the customer base at
December 31, 20077

45

Hypothetical Contractual Setting

The aggregate retention rate is the fraction of 2006
customers who renewed their contracts at the beginning of

2007:
26,569 — 10,000

23.965 = 0.691

Expected residual value of the customer base at December
31, 2007:

0.691¢

W = $4,945,049

26,569 x > $100 X
t=1

46



What’s wrong with this analysis?

47

Hypothetical Contractual Setting

# Customers 2003 2004 2005 2006 2007

New 10,000 10,000 10,000 10,000 10,000
End of year 10,000 16,334 20,701 23,965 26,569

48



Hypothetical Contractual Setting

Number of customers who are still alive each year by
year-of-acquisition cohort:

2003 2004 2005 2006 2007
10,000 6,334 4,367 3,264 2,604
10,000 6,334 4,367 3,264

10,000 6,334 4,367

10,000 6,334

10,000

10,000 16,334 20,701 23,965 26,569

49

Annual Retention Rates by Cohort

2003 2004 2005 2006 2007
0.633 0.689 0.747 0.798

0.633 0.689 0.747

0.633  0.689

0.633

0.633 0.655 0.675 0.691

50



Vodafone Germany
Quarterly Annualized Churn Rate (%)

25 q

20 - \/\/__\

Churn rate (%)

0 T T T T T T T T
Q2 02/03 Q302/03 Q4 02/03 Q103/04 Q203/04 Q303/04 Q403/04 QI 04/05

Source: Vodafone Germany “Vodafone Analyst & Investor Day” presentation (2004-09-27)
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Renewal rates at regional magazines vary; generally
30% of subscribers renew at the end of their
original subscription, but that figure jumps to 50%
for second-time renewals and all the way to 75% for
longtime readers.

Fielding, Michael (2005), “Get Circulation Going: DM Redesign Increases Renewal
Rates for Magazines,” Marketing News, September 1, 9-10.

New subscribers are actually more likely to cancel
their subscriptions than older subscribes, and
therefore, an increase in subscriber age tends to
lead to reductions in subscriber churn.

Netflix FY:03 Form 10-K
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A Real-World Consideration

1.00 ~

0.75

Retention Rate

Year

At the cohort level, we (almost) always observe
increasing retention rates.

53

Why Do Retention Rates Increase Over Time?

1.00 ~

0.75

Retention Rate
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Why Do Retention Rates Increase Over Time?

Individual-level time dynamics:

- increasing loyalty as the customer gains more
experience with the firm, and/or

- increasing switching costs with the passage of
time.

VS.

A sorting effect in a heterogeneous population.

55

The Role of Heterogeneity

Suppose we track a cohort of 10,000 customers,
comprising two underlying segments:

- Segment 1 comprises one-third of the customers, each
with a time-invariant annual retention probability of
0.9.

- Segment 2 comprises two-thirds of the customers, each
with a time-invariant annual retention probability of
0.5.

56



Vodafone Italia
Churn Clusters

100 -
Cluster P(churn) %CB
Low risk 0.06 70 50 A
Medium risk 0.35 20
High risk 0.65 10
0 T T T I T 1

0.0 02 04 06 0.8

P(churn)

Source: “Vodafone Achievement and Challenges in Italy” presentation (2003-09-12)
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The Role of Heterogeneity

Year

# Customers Still Alive Tt

Seg 1 Seg 2 Total Segl Seg?2 Total

|92 YN U S

3,333 6,667 10,000

3,000 3,334 6,334 0.900 0.500 0.633
2,700 1,667 4,367 0.900 0.500 0.689
2,430 834 3,264 0.900 0.500 0.747
2,187 417 2,604 0.900 0.500 0.798
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The Role of Heterogeneity

1.0
Segment 1

0.8 - -
. /
< 0.6 -
i Segment 2
5
5
2 0.4
o

0.2

0.0 T T T T T T T T T T

1 2 3 4 5 6 7 8 9 10

Year
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Implications for Valuing a Customer Base

- Not only do we need to project retention beyond the
set of observed retention rates ...

- We also need to recognize inter-cohort differences (at
any point in time).

60



Retention Rates by Cohort

1.0 q

0.9 ~

- - -
- - - -

0.8 - ~
. -

- -
- -
0.7 - -
.

Retention Rate
N
A
\

0.6

0.5 T T T T
2003 2004 2005 2006 2007 2008 2009 2010

Year
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E(RLV) by Segment

- If this person belongs to segment 1:

i 0.9¢
= $495
- If this person belongs to segment 2:
= 0.5¢
E(RLV) = t:zl 100 x W

= §92
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E(RLV) of an Active 2003 Cohort Member

According to Bayes’ Theorem, the probability that this
person belongs to segment 1 is

P (renewed contract four times | segment 1) X P(segment 1)

P (renewed contract four times)
0.9% x 0.333

T 0.94x0.333 + 0.5% x 0.667
— 0.84

= E(RLV) = 0.84 x $495 + (1 — 0.84) x $92 = $430
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P(Seg 1) as a Function of Customer “Age”

# Customers Still Alive
Year Segl Seg 2 Total P(Seg1l)
3,333 6,667 10,000 0.333
3,000 3,334 6,334 0.474
2,700 1,667 4,367 0.618
2,430 834 3,264  0.745
2,187 417 2,604  0.840

Ul ks W N =
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Valuing the Existing Customer Base

Recognizing the underlying segments:

Cohort # Alive in 2007 P(Seg1) E(RLV)

2007 10,000 0.333 $226
2006 6,334 0.474 $283
2005 4,367 0.618 $341
2004 3,264 0.745 $392
2003 2,604 0.840 $430

Total expected residual value = $7,940,992
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Valuing the Existing Customer Base

Cohort Total RV  Underestimation

Naive $4,945,049 38%
Segment (model) $7,940,992
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Exploring the Magnitude of the Error
- Systematically vary heterogeneity in retention rates

- First need to specify a flexible model of contract
duration

67

A Discrete-Time Model for Contract Duration

i. An individual remains a customer of the firm with
constant retention probability 1 — 0
— the duration of the customer’s relationship with
the firm is characterized by the (shifted)
geometric distribution:

St]|9)=(1-6)*t t=1,2,3,...

ii. Heterogeneity in 0 is captured by a beta distribution
with pdf
90(—1(1 _ 9)3—1

g0, B) = B B)

68



A Discrete-Time Model for Contract Duration
- The probability that a customer cancels their contract
in period t
1
P(T=t|of) = | P(T=t]0)g(0]ap)do
0

_ Bla+1,p+t-1)
- B(x, B) ’

- The aggregate survivor function is

t=1,2,...

1
ﬂﬂm&=LSmmmma$M0

_ B(x,B+t)

Bl B) t=1,2,...

69

A Discrete-Time Model for Contract Duration

- The (aggregate) retention rate is given by

S

S S(t-1)

. B+t-1
x4+ B+t—-1"

T

- This is an increasing function of time, even though the
underlying (unobserved) retention rates are constant at
the individual-level.
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Computing E(CLV)

- Recall:

E(CLV) = JOOO E[v(t)]S(®)d(t)dt.

- In a contractual setting, assuming an individual’s mean
value per unit of time is constant (v),

E(CLV) =v Joo St)d(t)dt.
0

- Standing at time s, a customer’s expected residual
lifetime value is

E(RLV) = vfo S|t > )d(t —s)dt

g
discounted expected residual lifetime

71

Computing DERL

- Standing at the end of period n, just prior to the point
in time at which the customer makes her contract
renewal decision,

DERL(d | 0,1 — 1 renewals) = 5 S E>1n~1:0)

= (1+d)t=n
C1-0)(1+d)
- d+ 6 '

- But 0 is unobserved ....
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Computing DERL

By Bayes’ Theorem, the posterior distribution of 0 is

Sn-110)g(0]« B)
B 90(—1(1 _ 9)B+n—2
~ B(x,B+n-1)

g0 &, B,n — 1 renewals) =

= DERL(d | &, B,n — 1 renewals)

1
_ J {DERL(d | 0,n — 1 renewals)
0
xgo|lo,B,n—1 renewals)}d@
B ( B+n-1

x+pB+n-1

)2F1(1,3+n;0<+3+n;ﬁ)
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Computing DERL
Alternative derivation:

DERL(d | &, B,n — 1 renewals)
S S(tlt>n-1;B)

:tzzn (1+d)yt-—n

e Stla,B) 1 \tn
_IgnS(n—l|0(,B)<1+d>

= B(x,B+1) 1 \t-n
=2, <1+d>

B(xx,f+n—-1)

B+n-—-1
x+pf+n-1

~

=n

)2F1(1,3+n;0<+3+n;ﬁ)
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Impact of Heterogeneity on Error

- Assume the following arrival of new customers:

2003 2004 2005 2006 2007
10,000 10,000 10,000 10,000 10,000

- Assume 7 = $1 and a 10% discount rate.

- For given values of « and f, determine the error
associated with computing the residual value of the
existing customer base using the naive approach (a
constant aggregate retention rate) compared with the
“correct” model-based approach.

75

Two Scenarios

Case 1o B E(0O) S(1) S(2) S(3) S4)

1 3.80 15.20 0.20 0.800 0.684 0.531 0.439
2 0.067 0.267 0.20 0.800 0.760 0.738 0.724
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Computing DERL Using Excel

Recall our alternative derivation:
DERL(d | &, B,n — 1 renewals)

e Stla,B) 1 \tn
_tgnS(n—l|0(,B)<1+d>

We compute S(t) from the sBG retention rates:

B+i-1
Xx+B+i—-1"

t
S(t) = nri where r; =
i=1

77

A | B | C | D | E | F
alpha 3.8 DERL 3.59
beta 15.2

2 renewals (n=3)

t S(t) S(t|t>n-1) disc.
0  1.0000 | / - -
1 08000 | =SUMPRODUCT(D8:D205,E8:E205) | |

2/ 0.6480
0.5307 0.8190  1.0000
4 0.4391 / 0.6776  0.9091
10 0.5656 oﬁ
—(B$2+A6-1 _ —1/1.1N($A8-3
= (B$2+A6-1)/ |-B8/$B%7] vare ol ($A8-3)

(B$1+B$2+A6-1)*B5
4

[{e] [ee] N Keop] {631 BN [40] 1 (00

12 U.ZOTO 0.4037 0.6830
13 8 0.2234 0.3447 0.6209
14 9 0.1919 0.2962 0.5645
15 10 0.1659 0.2560 05132_____
201] 196 6.14E-05 | 9.48E-05 1.03E-08
202 197 6.03E-05 9.31E-05 9.33E-09
203 198 5.93E-05 9.15E-05 8.48E-09
204 199 5.82E-05 8.99E-05 7.71E-09
205 200 5.72E-05 8.83E-05 7.01E-09
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Number of Active Customers: Case 1

2003 2004 2005 2006 2007 m  E(RLV)
10,000 8,000 6,480 5,307 4,391 5 $3.84
10,000 8,000 6,480 5,307 4 $3.72
10,000 8,000 6,480 3 $3.59
10,000 8,000 2 $3.45
10,000 1 $3.31

10,000 18,000 24,480 29,787 34,178

Aggregate 06-07 retention rate = 24,178/29,787 = 0.81

79

Impact of Heterogeneity on Error: Case 1

o0

) . 0.81¢
Naive valuation = 34,178 x t:Zl (1+0.1)t-1

= $105,845
Correct valuation = 4,391 x $3.84 + 5,307 x $3.72
+ 6,480 x $3.59 + 8,000 x $3.45
+ 10,000 x $3.31
= $120,543

Naive underestimates correct by 12%.
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Number of Active Customers: Case 2

2003 2004 2005 2006 2007 m  E(RLV)

10,000 8,000 7,600 7,383 7,235 5 $10.19
10,000 8,000 7,600 7,383 4 $10.06

10,000 8,000 7,600 3 $9.86

10,000 8,000 2 $9.46

10,000 1 $7.68

10,000 18,000 25,600 32,983 40,218

Aggregate 06-07 retention rate = 30,218/32,983 = 0.92
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Impact of Heterogeneity on Error: Case 2

) . > 0.92¢
Naive valuation = 40,218 x t:zl (1+0.1)t"1

= $220,488
Correct valuation = 7,235 x $10.19 + 7,383 x $10.06
+ 7,600 x $9.86 + 8,000 x $9.46
+ 10,000 x $7.68
= $375,437

Naive underestimates correct by 41%.
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Interpreting the Beta Distribution Parameters

10 o 1
mean U = and polarization index ¢ = ———
x+f x+p+1
i E(0) =04 i E0) =04
¢ -0 b1

9(0)

0.0 0.5 1.0 0.0 0.5 1.0

0 0
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Shape of the Beta Distribution
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Churn Rate as a Function of u and ¢

For a fine grid of points in the (u, ¢) space, we determine the
corresponding values of (&, ) and compute the associated aggregate
2006/07 churn rate:

1.0

osk —° /0

e/0 i
@?
=
041 / i

/

0.2

Naive Model Valuation as a Function of y and ¢

Expected residual lifetime value (in $000) of the customer
base computed using the aggregate 2006/07 churn rate:

1.0

0.8

" }_,a/ /

02k A0




sBG Model Valuation as a Function of y and ¢

Expected residual lifetime value (in $000) of the customer
base computed using the sBG model:

;: o
//::?%

% Underestimation as a Function of u and ¢

1.0

i/%/%/éI jg‘ \B‘ \y\
:Bng 2 | \Q |

0.2




Re-analysis Using (r1, r2)

- u and ¢ are not quantities that most managers or
analysts think about; retention rates are easier to

comprehend.

- Since the period 1 and 2 retention rates are,
respectively,

__B __B+1
= 0(+Bandr2_ x+B+1°
it follows that
X = (1 =7r)(1—-12) andﬁzﬁ(l—?’z)_
T2 — 1 T2 — 1

89

Shape of the Beta Distribution (rq, 72)
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Error as a Function of (7, 72)

For a fine grid of points in the (¥1,7>) space, we determine the
corresponding values of (&, ) and compute % underestimation:

1.0

y L))

)
02
/ //
o
.
g

L L L L
0.0 0.2 0.4 0.6 0.8 1.0
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Expressions for DE(R)L

Different points in time at which a customer’s discounted
expected (residual) lifetime can be computed:

@) (ii) (i)  (iv)
N | s | | | ~ | i

0

—
N
|

—
S
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Expressions for DE(R)L

Case (i):

DEL(d | &, B) = »F (1, B; o + B; 125)

Case (ii):
DERL(A | &, B)
::uw+3ﬁ1+d)ﬂﬁ“'3+l(X+B+J”“d)
93
Expressions for DE(R)L
Case (iii):

DERL(d | &, B, active for n periods)
_ B+n-1
Cx+B+n-1

2F1(1 [3+n o<+B+n,1+d)

Case (iv):

B+n

DERL(d | &, B, n contract renewals) = x+B+n)(1+d)

xﬁﬂlﬁ+n+1a+3+n+lum)
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Classifying Customer Bases

Grocery purchases Credit card

Continuous Doctor visits Student mealplan

Hotel stays Mobile phone usage
Opportunities for
Transactions
Event attendance Magazine subs

Discrete Prescription refills Insurance policy

Charity fund drives Health club m’ship

Noncontractual Contractual

Type of Relationship With Customers
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Contract Duration in Continuous-Time

i. The duration of an individual customer’s relationship
with the firm is characterized by the exponential
distribution with pdf and survivor function,

fEIA) = Ae ™M
S(t|A) =e M

ii. Heterogeneity in A follows a gamma distribution with
pdf
e Ar—l e—(x)\

gA|lr,x) = T
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Contract Duration in Continuous-Time

This gives us the exponential-gamma model with pdf and
survivor function

Flt 17,00 = JO FEINGA T, &) dA
v X r+1
T« <a+ t)
S(t|r,x) = JOOOS(tH\)g(?\IT,O()d?\

- (o(oit)r
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The Hazard Function
The hazard function, h(t), is defined by

. P(t<T<t+At|T>t
h(t) = lim 2 L+ALT > 1)
At—0 At

f(t)
1-F(t)

and represents the instantaneous rate of “failure” at time ¢t
conditional upon “survival” to t.

The probability of “failing” in the next small interval of
time, given “survival” to time t, is

Pt<T<t+At|IT>t)=h(t) xAt
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The Hazard Function

- For the exponential distribution,
h(t|A) = A
- For the EG model,

hitlr,x) =

x+t

- In applying the EG model, we are assuming that the
increasing retention rates observed in the aggregate
data are simply due to heterogeneity and not because
of underlying time dynamics at the level of the
individual customer.
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Computing DERL

- Standing at time s,
DERL = J S(t1t> s)d(t —s)dt
s

- For exponential lifetimes with continuous
compounding at rate of interest 9,

o0

DERL(S | A, tenure of at least s) = J e MI=9)p=0(=5) gt

s

- But A is unobserved ....
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Computing DERL

By Bayes’ Theorem, the posterior distribution of A for an
individual with tenure of at least s,

SINDgAlr,x)
Sis|r,x)

B (o(_,_s)r;\r—le—?\(ows)

- I'(r)

g(A| 7, «, tenure of at least s) =
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Computing DERL

It follows that
DERL(S | 7, &, tenure of at least s)
= J {DERL((S | A, tenure of at least s)
0

X g(A | r, «, tenure of at least s)}d?\

= (x+ ) 0" 'V(r,r; (x+5)d)

where ¥ (-) is the confluent hypergeometric function of the
second kind.
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Models for Noncontractual Settings
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Classifying Customer Bases

Grocery purchases Credit card

Continuous Doctor visits Student mealplan

Hotel stays Mobile phone usage
Opportunities for
Transactions
Event attendance Magazine subs

Discrete Prescription refills Insurance policy

Charity fund drives Health club m’ship

Noncontractual Contractual

Type of Relationship With Customers
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Setting

- A major public radio station located in the Midwestern
United States.

Supported in large part by listener contributions.

Initial focus on 1995 cohort, ignoring donation amount:
- 11,104 people first-time supporters.

- This cohort makes a total of 24,615 repeat
donations (transactions) over the next 6 years.

- What level of support (# transactions) can we expect
from this cohort in the future?

106



ID 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

100001 1 0 0 0 0 0 0 ? ? ? ? ?
100002 1 0 0 0 0 0 0 ? ? ? ? ?
100003 1 0 0 0 0 0 0 ? ? ? ? ?
100004 1 0 1 0 1 1 1 ? ? ? ? ?
100005 1 0 1 1 1 0 1 ? ? ? ? ?
100006 1 1 1 1 0 1 0 ? ? ? ? ?
100007 1 1 0 1 0 1 0 ? ? ? ? ?
100008 1 1 1 1 1 1 1 ? ? ? ? ?
100009 1 1 1 1 1 1 0 ? ? ? ? ?
100010 1 0 0 0 0 0 0 ? ? ? ? ?
111102 1 1 1 1 1 1 ? ? ? ? ?

111103 1 0 1 1 0 1 1 ? ? ? ? ?
111104 1 0 0 0 0 0 0 ? ? ? ? ?

107

Modelling the Transaction Stream

Each year a listener decides whether or not to support
the station by tossing a coin.

P(heads) varies across listeners.
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Modelling the Transaction Stream

- Let random variable X (7) denote the # transactions
across m consecutive transaction opportunities.

- The customer buys at any given transaction
opportunity with probability p:

P(X(n)=x|p) = (7;) pX(1-p)" .

- Purchase probabilities (p) are distributed across the
population according to a beta distribution:

p* (1 -p)F!
B(«, B)

gpla,B) =
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Modelling the Transaction Stream

The distribution of transactions for a randomly-chosen
individual is given by

1
PX(n)=x|&pB) = JO P(X(n)=x|p)g(plo,B)dp
_ (n)B(a+x,B+n—x)

X B(«, B) ’

which is the beta-binomial (BB) distribution.
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# People

Fit of the BB Model
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Tracking Cumulative Repeat Transactions
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Repeat Transactions in 2002 - 2006

7,000 ~
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Conditional Expectations
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Conditional Expectations

1996 1997 1998 1999 2000 2001
Cust. A 1 0 0 0 1 0
Cust. B 1 1 0 0 0 0

Let X(n,n + n*) denote the number of transactions in the
interval (n,n + n*].

According to the BB,

Cust. A: E[X(6,11)|x=2,n=6] =1.70
Cust. B: E[X(6,11) | x=2,n=6] =7
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Tracking Cumulative Repeat Transactions
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Towards a More Realistic Model

Cumulative Transactions

Total

117

Modelling the Transaction Stream

Transaction Process:

- While "alive”,

a customer makes a purchase at any

given transaction opportunity as-if randomly

- Transaction probabilities vary across customers

Dropout Process:

- Each customer has an unobserved “lifetime”

- Dropout rates vary across customers
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Model Development

A customer’s relationship with a firm has two phases: he is
“alive” (A) for some period of time, then “dies” (D).

- While “alive”, the customer buys at any given transaction
opportunity with probability p:

P(Yy=1|p,aliveatt) =p

- A “living” customer becomes “dies” at the beginning of a
transaction opportunity with probability 0

= P(alive att| ) = P(AA...A|0) = (1 — 9)!
t
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Model Development

Consider the following transaction pattern:

1996 1997 1998 1999 2000 2001
1 0 0 1 0 0

- The customer must have been alive in 1999 (and
therefore in 1996-1998)

- Three scenarios give rise to no purchasing in 2000 and
2001

1996 1997 1998 1999 ‘2000 2001

A A A A D D
A A A A A D
A A A A A A
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Model Development

We compute the probability of the purchase string
conditional on each scenario and multiply it by the
probability of that scenario:

. . _ . 4
f(100100|p,0) = p(1-p)(1 -p)p(1-0)"0

P(AAAADD)
+p(1-p)1-p)p(1-p)(1-0)°0
\—(—J
P(AAAAAD)
—~ —~ -p)(1- 1-0)°
+p(1 v)Y(l p)p(l-p)(1-p) (1 -0)
P(Y1=1,Y2=0,Y3=0,Y4=1) P(AAAAAA)
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Model Development

- Bernoulli purchasing while alive = the order of a given
number of transactions (prior to the last observed
transaction) doesn’t matter. For example,

F£(100100 | p, 0) = £(001100 | p, 0) = £(010100 | p, 0)

- Recency (time of last transaction, t,) and frequency
(number of transactions, x = >.;'; y;) are sufficient
summary statistics

=> we do not need the complete binary string
representation of a customer’s transaction
history
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Summarizing Repeat Transaction Behavior

1996 1997 1998 1999 2000 2001 X tx n  #Donors
1 1 1 1 1 1 1 —_— 6 6 6 1203
2 1 1 1 1 1 0 5 6 6 728
3 1 1 1 1 0 1 5 5 6 335
4 1 1 1 1 0 0 4 6 6 512
5 1 1 1 0 1 1 4 5 6 284
6 1 1 1 0 1 0 4 4 6 240
7 1 1 1 0 0 1 3 6 6 357
3 5 6 225
3 4 6 181
3 3 6 322
2 6 6 234
2 5 6 173
2 4 6 155
2 3 6 255
2 2 6 613
1 6 6 129
1 5 6 119
1 4 6 79
1 3 6 129
1 2 6 277
62 0 0 0 0 1 0 1 1 6 1091
63 0 0 0 0 0 1 0 0 6 3464
64 0 0 0 0 0 0 11104
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Model Development

For a customer with purchase history (x, t,, n),

Lp,0|x,tx,n) =p (1 —p)" X1 -0)"
n—tx—1

Y pA-pte - o)
i=0

We assume that heterogeneity in p and 0 across customers
is captured by beta distributions:

p* (1 -p)h!
B(«, B)
93/—1(1 . 9)5—1
B(y,o)

gpla,B) =

g@ly,d) =
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Removing the conditioning on the latent traits p and 0,

Model Development

L((X’B’Y’5|X,tx,n)

Bax+x,B+n—x)B(y,0 +mn)

B(«x, B)

n—tx—1

2
i=0

Bax+x,B+tx—x+1)B(y+1,0+tx +1)

B(y,9)

1 1
0 JO L(p,0 | x,tx,m)g(p| o B)g(0]y,5) dp do

B(«x, B)

B(y,o)

... which is (relatively) easy to code-up in Excel.
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A B C ‘ D E F G H I ] L M o]
1 alpha 1.204 Blalpha,beta) 1.146
2 beta 750 [
3 gamma 657 Bigamma,delta) 0.729
4 delta 2.783
5
& LL
7
8 X| 1% n| &donors Li. | X=x,1_x,n) n-t_x-1 0 1 4 5|
El & & [ 1203] -2624.6 0.1128 -1 01128 0 0 0 0
10 5 & [ 2. -3126.7 -1 0.0136 0 0 0 0
11 4 6| [ 512| -2757.0 -1 0.0046 1] 1] 0 0
12 3 6| [ 357| -2073.9 -1 0.0030 1] 1] 0 0
13 2 6| [ 234) 13225 -1 0.0035 [1] [1] 0 0
14 1 6| [ 129 -630.0 -1 0.0076 [1] [1] 0 0
15 5 5 [ 335 -1245.1 0 0.0136 0.0107 [1] 0 0
16 4 5 [ 384| -14471 o 0.0046 0.0015 0 o o
17 3 5 [ 335 -13635 o 0.0030 0.0008 0 0 0
18 2 5 [ 173 -8516 o 0.0035 0.0005 0 0 0
19 1 5 [ 119 -567.3 o 0.0076 0.0009 0 0 0
20 4 4 [ 240 -923.6 1 0.0046 0.0152 0.0015 0 0
21 3 4 [ 181 -815.7 1 0.0030 0.0027 0.0008 0 0
22 2 4 [ 155 -805.3 1 0.0035 0.0015 0.0005 0 0
23 1 4 [ 78 -356.5 1 0.0076 0.0018 0.0003 0 0
24 3 3 [ 322| -1135.38 2 0.0030 0.0230 0.0027 1] 0
25 2 3 [ 255 -11516 2 0.0035 0.0054 0.0015 1] 0
26 1 3 [ 129 -545.0 2 00076 00045 0.0018 a 0
a7 2 2 [ 513| -1846.4 3 0.0035 00383 0.0054 a o
a8 1 2 [ 77 -883.9 3 0.0076 0.0130 0.0043 0 0
29 1 1 [ 1091) -2487.1 4 0.0076 0.0737 0.0130 0
30 0 0 [ 3464 -4044.3 5 0.0362 0.1909 0.0459 0.0037|
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A B ¢ [ D E F ! G ! H ! | ! 1 ! K ! L ! ™ N 0
- alphal 1204 Sfaloha,betall  1.146|=—A =EXP{GAMMALN(E1)~GAMMALN(B2)-.GAMMALN(E1+62)) ;
2 beta| 0750 [ | E— . . : . . ]
3 gamma 0.657 Blgamma,delta) 0.729 | | | | | |
[ delta]|  2.783 [ =EXP(GAMMALN{SBS1+AG+ GAMMALN(SB$2+C3-49)-
S GAMM.&LNtSB$1+SB52+CEI)n’SEEIL'_E}B;F;(E\AB%TféH{SSISE%S?r
2 BT 4—|'_|—=°UM(EEI'E_'719] || Ga\n.:lmnmcsmucgy-smmh N 5 T_l)u' |
7 i
8 X t_x n| #donars L |X=x,l_x.r!j nx-1 l o] 1] 2[ 3 4 5|
9 3 6 6 1203]  2624.6]  0.1129] 1| oazs[ 0 o] of 0 0 0
10 5 6 6 728|—=meal  moaagl i aaiac ol al ol 0 0 0
1 3 5 5 512 =IF(5HI<J55,0, EXP(GAMMALN(SES 1+5A9)+ GAMMAL N(SB52+SBO-5A0+36)- o o o
12 3 6 6 357 GAMMALN(SES1+3B52+5B5+/58] YSES 1 EXP(GAMMALN(SESI+ 1)+ 3 o o
= MMALN[SES4+ 589+ 38)-GAMMAL N(3B53+3054 5309+ J58+1)/5E53)
13 2 6 6 234 0 [ 0
14 1 6 6 129]  -6300] 00006 1] 0.0076 0 [ [ 0 [ [
15 5] 5 6 335] 12451 | =C15B1E1 = 0 0.0107 0 0 0 0
16 a 5 B o84l 14471  0.00B1 [ 00015 [ [ 0 [ [
17 3 5 =DiLhFs)  [35] o.o03e 0 0.0006 0 0 o 0 o
12 7 5 B T TR26|  0.0041 0.0005 [0 [0 0 [ [
19 1 5 6 119 ! 567.3]  0.0085 -—‘l =SUMIMB:019) 0.0008 0 0 0 [ 0
20 a [ 3 240]  o23s] D023 1 0.0152] 0.0015 [ 0 0 0
21 3 4 B 181 9157 0.0063 1 0.0027] _ 0.0006 [ 0 0 0
22 2 4 6 155]  g0s3|  o.0085 1 0.0015]  0.0005 0 0 0 0
23 1 4 6 78] -3565] 0.0104 1 0.0018]  0.0009 [ 0 0 o
24 3 3 6 322[ 11358 0.0294 2 0.0230] 0.0027] 0.0008 0 [ 0
25 2 3 6 255] -11516] 0.0109 2 0.0054]  0.0015]  0.0005 0 [ [
76 1 3 B 128] 5450 0.0146 2 00043] 0ODIB|  0.0009 0 [ 0
27 7 7 5 §13| -18464]  0.0452 3 00383]  00054|  0.0015 00005, [ [
28 1 2 6 277|  se3s| oo2vs 3 00130] 0.0043] oo01s]  o.0009) 0 o
29 1 1 6 1091] 24971 o0.1014 4 0.0737] 0.0130] 00043 oo018] 0.0009 0
30 0 0 6 3464 a04a3| o031 5 0.1908] ©0.0458] oo0189] oooos|  ooosE  0.0037
127

Parameter Estimates (1995 Cohort)

X

B Y o

LL

BB

BG/BB

0.487 0.826
1.204 0.750 0.657 2.783

—-35,516.1
-33,225.6
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Cumulative # Repeat Transactions

Fit of the BG/BB Model
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Tracking Cumulative Repeat Transactions
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# Repeat Transactions

Tracking Annual Repeat Transactions
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Repeat Transactions in 2002 - 2006
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Key Results

For an individual with observed behavior (x, t,, n):
- P(alive in period n + 1 | x, ty,n)

The probability he will be “alive” in the next period.

- P X(nn+n*) =x*|x,t,,n)

The probability he will make x* transactions across the next n*
transaction opportunities.

- E[X(n,m+n*)|x,ty,n]

The expected number of transactions across the next n*
transaction opportunities.

DERT(d | x,tyx,n)

The discounted expected residual transactions.
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ID 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

100001 1 0 0 0 0 0 0 ? ? ? ? ?
100002 1 0 0 0 0 0 0 ? ? ? ? ?
100003 1 0 0 0 0 0 0 ? ? ? ? ?
100004 1 0 1 0 1 1 1 ? ? ? ? ?
100005 1 0 1 1 1 0 1 ? ? ? ? ?
100006 1 1 1 1 0 1 0 ? ? ? ? ?
100007 1 1 0 1 0 1 0 ? ? ? ? ?
100008 1 1 1 1 1 1 1 ? ? ? ? ?
100009 1 1 1 1 1 1 0 ? ? ? ? ?
100010 1 0 0 0 0 0 0 ? ? ? ? ?
111102 1 1 1 1 1 1 ? ? ? ? ?

111103 1 0 1 1 0 1 1 ? ? ? ? ?
111104 1 0 0 0 0 0 0 ? ? ? ? ?
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Expected # Transactions in 2002 -2006
as a Function of Recency and Frequency

# Rpt Trans. Year of Last Transaction

(1996-2001) 1995 1996 1997 1998 1999 2000 2001
0 0.07
1 0.09 031 059 084 1.02 1.15
2 0.12 054 1.06 1.44 1.67
3 0.22 1.03 1.80 2.19
4 0.58 2.03 2.71
5 1.81 3.23
6 3.75
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Conditional Expectations by Frequency

# Repeat Transactions (2002 -2006)

4 S

—=— Actual
---¢--- Model

# Repeat Transactions (1996 -2001)
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Conditional Expectations by Recency

4 S

# Repeat Transactions (2002 -2006)
N

1995 1996 1997 1998 1999 2000 2001

Year of Last Transaction
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Expected # Transactions in 2002 -2006
as a Function of Recency and Frequency

# Rpt Trans. Year of Last Transaction

(1996-2001) 1995 1996 1997 1998 1999 2000 2001
0 0.07
1 0.09 031 059 084 1.02 1.15
2 0.12 054 1.06 1.44 1.67
3 0.22 1.03 1.80 2.19
4 0.58 2.03 2.71
5 1.81 3.23
6 3.75
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Expected # Transactions in 2002 -2006
as a Function of Recency and Frequency

- ) w EN

E(# Trans. in 2002-2006)

o

Frequency (x) 1995
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Posterior Mean of p as a
Function of Recency and Frequency

Recency (tx)

# Rpt Trans. Year of Last Transaction

(1996-2001) 1995 1996 1997 1998 1999 2000 2001
0 0.49
1 066 044 034 030 0.28 0.28
2 0.75 054 044 041 040
3 0.80 061 054 0.53
4 0.82 0.68 0.65
5 0.83 0.78
6 0.91
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P(alive in 2002) as a
Function of Recency and Frequency

# Rpt Trans. Year of Last Transaction

(1996-2001) 1995 1996 1997 1998 1999 2000 2001
0 0.11
1 0.07 0.25 048 0.68 0.83 0.93
2 0.07 030 059 080 0.93
3 0.10 044 0.77 0.93
4 0.20 0.70 0.93
5 0.52 0.93
6 0.93
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Moving Beyond a Single Cohort

Cohort Size

1995 11,104
1996 10,057
1997 9,043
1998 8,175
1999 8,977
2000 9,491

- Pooled calibration using the repeat transaction data for
these 56,847 people across 1996 -2001

- Hold-out validation period: 2002 -2006
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Parameter Estimates (Pooled)

X B y o) LL

BB 0.501 0.753 -115,615.0
BG/BB 1.188 0.749 0.626 2.331 -110,521.0
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Fit of the BG/BB Model
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Cumulative # Repeat Transactions
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Tracking Annual Repeat Transactions
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Computing E(CLV)

- Recall:

E(CLV) = Joo E[v(t)]S(t)d(t)dt.
0

- Assuming that an individual’s spend per transaction is
constant, v (t) = net cashflow/transaction X t(t)
(where t(t) is the transaction rate at t) and

E(CLV) = E(net cashflow / transaction)

% JwE[t(t)]S(t)d(t)dt.
0
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Computing E(RLV)
- Standing at time T,

E(RLV) = E(net cashflow/ transaction)

« JOOE[t(t)]S(t 't> T)d(t - T)dt.
T J

g
discounted expected residual transactions

- The quantity DERT, discounted expected residual
transactions, is the present value of the expected
future transaction stream for a customer with a given
purchase history.
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Computing DERT

- For a customer with purchase history (x, ty,n),

DERT(d | p, 0, alive at n)

o0

. P(Y, =1]p,alive at t)P(alive att [t > n, 0)

(1+d)t—m

t=n+1
p(l-20)
d+ 0

- However,
- p and 0 are unobserved
- We do not know whether the customer is alive at n
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Computing DERT

DERT(d | &,B,y,0,x,tx,n)

1 1
=J J {DERT(d | p, 0, alive at n)
0 JO
X P(alive atn | p,0,x,tx,n)

X g(p, 0|, B,y,8,x,tx, 1) | dp do
_Blax+x+1,+n—-x)B(y,0+n+1)
- B(«x, B) B(y,8)(1 +d)
2F1(1,5+n+1;y+5+n+1;ﬁ)
Lo, By, 0| x,tx, 1)
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DERT as a Function of
Recency and Frequency (d = 0.10)

# Rpt Trans. Year of Last Transaction

(1996-2001) 1995 1996 1997 1998 1999 2000 2001
0 0.13
1 0.15 0.54 1.03 1.45 1.77  1.99
2 0.21  0.93 1.83 250 2.89
3 039 1.79 3.13 3.79
4 1.01 3.52 4.70
5 3.14 5.60
6 6.50
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“Discrete-Time” Transaction Data
A transaction opportunity is

a well-defined point in time at which a transaction
either occurs or does not occur, or

a well-defined time interval during which a (single)
transaction either occurs or does not occur.

“necessarily discrete” attendance at sports events
attendance at annual arts festival

“generally discrete” charity donations
blood donations

discretized by cruise ship vacations
recording process
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Further Reading

Fader, Peter S., Bruce G.S. Hardie, and Jen Shang (2009),
“Customer-Base Analysis in a Discrete-Time Noncontractual
Setting.” <http://brucehardie.com/papers/020/>

Fader, Peter S., Bruce G.S. Hardie, and Paul D. Berger (2005),
“Implementing the BG/BB Model for Customer-Base Analysis
in Excel.” <http://brucehardie.com/notes/010/>
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From Discrete to Continuous Time

- Suppose we have a year of data from Amazon.

- Should we define

- 12 monthly transaction opportunities?
- 52 weekly transaction opportunities?
- 365 daily transaction opportunities?
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From Discrete to Continuous Time
As the number of divisions of a given time period — oo

binomial — Poisson
beta-binomial — NBD

geometric — exponential

beta-geometric — exponential-gamma
(Pareto of the second kind)
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Classifying Customer Bases

Grocery purchases Credit card

Continuous Doctor visits Student mealplan

Hotel stays Mobile phone usage
Opportunities for
Transactions
Event attendance Magazine subs

Discrete Prescription refills Insurance policy

Charity fund drives Health club m’ship

Noncontractual Contractual

Type of Relationship With Customers
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Setting
- New customers at CDNOW, 1/97-3/97

- Systematic sample (1/10) drawn from panel of 23,570
new customers

- 39-week calibration period
- 39-week forecasting (holdout) period

- Initial focus on transactions
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Purchase Histories

ID = 0001 & .

ID = 0002 & .

ID=1178 | .

ID=1179 | .

ID = 2356 | —

ID = 2357 | —

Week 0 Week 39
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Cumulative Repeat Transactions

6000 -

4000

Cum. # transactions

2000

0 13 26 39 52 65 78
Week
159
Modelling Objective

Given this customer database, we wish to determine the
level of transactions that should be expected in next period
(e.g., 39 weeks) by those on the customer list, both
individually and collectively.
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Modelling the Transaction Stream
Transaction Process:

- While active, a customer purchases “randomly” around
his mean transaction rate

- Transaction rates vary across customers
Dropout Process:
- Each customer has an unobserved “lifetime”

- Dropout rates vary across customers

161

The Pareto/NBD Model
(Schmittlein, Morrison and Colombo 1987)

Transaction Process:

- While active, # transactions made by a customer follows a
Poisson process with transaction rate A.

- Heterogeneity in transaction rates across customers is
distributed gamma(r, x).

Dropout Process:

- Each customer has an unobserved “lifetime” of length w, which is
distributed exponential with dropout rate p.

- Heterogeneity in dropout rates across customers is distributed
gamma(s, f3).
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Summarizing Purchase Histories

- Given the model assumptions, we do not require
information on when each of the x transactions
occurred.

- The only customer-level information required by this
model is recency and frequency.

- The notation used to represent this information is
(x,tyx, T), where x is the number of transactions
observed in the time interval (0, T] and t, (0 < t, < T)
is the time of the last transaction.
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Purchase Histories

ID = 0001 % —

ID = 0002 % —

ID=1178 | —

ID=1179 | —

ID = 2356 | —

ID = 2357 | s

Week 0 Week 39
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Raw Data

A | B [ C [ D
1 ID X t x T
2 0001 2 30.43 38.86
3 0002 1 1.71 38.86
4 0003 0 0.00 38.86
5 0004 0 0.00 38.86
6 0005 0 0.00 38.86
7 0006 7 29.43 38.86
8 0007 1 5.00 38.86
9 0008 0 0.00 38.86
10 0009 2 35.71 38.86
11 0010 0 0.00 38.86
12 0011 5 24.43 38.86
13 0012 0 0.00 38.86
14 0013 0 0.00 38.86
15 0014 0 0.00 38.86
16 0015 0 0.00 38.86
17 0016 0 0.00 38.86
18 0017 10 34.14 38.86
19 0018 1 4.86 38.86
20 _ 0019 ___ 3 2829 3871
1178 1177 0 0.00 32.71
1179 1178 1 8.86 32.71
1180 1179 0 0.00 32.71
1181)__ 1180 __ __ | 0 __ 000 __3271
2356 2355 0 0.00 27.00
2357 2356 4 26.57 27.00
2358 2357 0 0.00 27.00
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Pareto/NBD Likelihood Function

L(Ti 0(1513 | xth1T)

T(r+ x) o B s 2F1(r+5+x,5+1;r+5+x+1;0‘?‘—;t%)
- ) (o B

( ¥+ x )2F1(7+5+x,5;r+5+x+1;%)} "
, if &
Y +S+x (x+ T)rtstx

Yy +s+Xx

=B

L(Ti 0(1513 | xth1T)

_r(y+x)o(r35{< s )2F1(r+5+x,r+x;r+5+x+l;£+—t‘f{)
I(r) r+s+x (B+tyx)rTstx

. . B«
( ¥+ x )2F1(r+5+x,r+x+l,r+5+x+1,B+—T

(B + T)T+S+X

)},ﬁasﬁ

Yy +s+Xx
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Key Results

E[X(t)]

The expected number of transactions in the time
interval (O, t].

P(alive | x,ty, T)

The probability that an individual with observed
behavior (x, ty, T) is still “active” at time T.

E[X(T, T +1t)|x,tx,T]

The expected number of transactions in the future
period (T, T + t] for an individual with observed
behavior (x,ty, T).
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Frequency of Repeat Transactions
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Cumulative # Repeat Transactions

# Repeat Transactions

Tracking Cumulative Repeat Transactions

5000
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Tracking Weekly Repeat Transactions
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Conditional Expectations

T T
— Actual
—%— Pareto/NBD

w S o o
T T T T

Expected # Transactions in Weeks 40-78

N
T

3
# Transactions in Weeks 1-39
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Computing DERT

- For Poisson purchasing and exponential lifetimes with
continuous compounding at rate of interest o,

00 —ut
DERT(S | A, u,alive at T) = J A(e_ )e—fm—”dt
T \e HT

- J Ae HSe=05s
0
A
TR

- However,
- A and p are unobserved
- We do not know whether the customer is alive at T
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Computing DERT
DERT (6 |7, ¢, 8,B,x,tx, T)
- r Jw {DERT(5 | A, p, alive at T)
o X P(aliveat T | A, u,x,ty, T)

Xg(A’I’l |T, (X’S’B’x’ tx,T)}dAdu

&"BSSSTIT(r + x + 1)Y(s,8;0(B+T))
I(r)(«+ T)*>**1L(r,os,Blx,tx, T)

where ¥ (-) is the confluent hypergeometric function of the
second kind.

173

Continuous Compounding

- An annual discount rate of (100 x d)% is equivalent to
a continuously compounded rate of 6 = In(1 + 4).

- If the data are recorded in time units such that there
are k periods per year (k = 52 if the data are recorded
in weekly units of time) then the relevant continuously
compounded rateis 6 = In(1 + d) /k.
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DERT by Recency and Frequency

4+

PO SRR R N N
o o o o a o

o
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Frequency (x) Recency
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Iso-Value Representation of DERT

: ( \
| // ’

0 1 O 20 30 40 50 60 70 80
Recency (t X)

Frequency (x)
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The “Increasing Frequency” Paradox

Cust. A ¢ .

Cust. B ¢ .
Week 0 Week 78

DERT
Cust. A 4.6
Cust. B 1.9
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Key Contribution

- We are able to generate forward-looking estimates of
DERT as a function of recency and frequency in a
noncontractual setting:

DERT = f(R,F)

- Adding a sub-model for spend per transaction enables
us to generate forward-looking estimates of an
individual’s expected residual revenue stream
conditional on his observed behavior (REM):

E(RLV) = f(R,F,M) = DERT x g(F,M)
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Modelling the Spend Process

- The dollar value of a customer’s given transaction
varies randomly around his average transaction value

- Average transaction values vary across customers but
do not vary over time for any given individual

- The distribution of average transaction values across
customers is independent of the transaction process.
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Modelling the Spend Process

- For a customer with x transactions, let z1, z»,..., Zx
denote the dollar value of each transaction

- The customer’s average observed transaction value
X

My = > zi/X
i=1

is an imperfect estimate of his (unobserved) mean
transaction value E(M)

- Our goal is to make inferences about E(M) given m,.,
which we denote as E(M|my, x)
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Summary of Average Transaction Value

946 individuals (from the 1/10th sample of the cohort)
make at least one repeat purchase in weeks 1-39

$
Minimum 2.99
25th percentile 15.75
Median 27.50
75th percentile 41.80
Maximum 299.63
Mean 35.08
Std. deviation 30.28
Mode 14.96
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Modelling the Spend Process

- The dollar value of a customer’s given transaction is
distributed gamma with shape parameter p and scale
parameter v

- Heterogeneity in v across customers follows a gamma
distribution with shape parameter q and scale
parameter y
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Modelling the Spend Process

Marginal distribution for m,:

T(px +q) yiml ' xrx

I(px)T(q) (y + myx)px+a

Sfmxlp,a,y,x) =

Expected average transaction value for a customer with an
average spend of m, across x transactions:

E(M|p’q’ Y,mx,x) =

q-—1 yr_ pXx -
px+q—-1/)q—-1 px+q-—-1
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Distribution of Average Transaction Value
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Computing Expected Residual Lifetime Value

We are interested in computing the present value of an
individual’s expected residual margin stream conditional
on his observed behavior (REM)

E(RLV) = margin X revenue/transaction x DERT
= marglnx E(M|p’ q’ Y, mx,x)
X DERT(O |7, 8, B,x,tx, T)
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Estimates of E(RLV)

Frequency (x)
> ©
7
-2
5
Frequency (x)
> ®
7¢
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i/

(Margin = 30%, 15% discount rate)
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Closing the Loop

Combine the model-driven RFM-CLYV relationship with the
actual RFM patterns seen in our dataset to get a sense of
the overall value of this cohort of customers:

- Compute each customer’s expected residual lifetime
value (conditional on their past behavior).

- Segment the customer base on the basis of RFM terciles
(excluding non-repeaters).

- Compute average E(RLV) and total residual value for
each segment.
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Distribution of Repeat Customers

Frequency (x)

(12,054 customers make no repeat purchases)
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Average E(RLV) by RFM Segment

Recency
Frequency 0 1 2 3
M=0 0 $4.40
M=1 1 $6.39 $20.52 $25.26
2 $7.30 $31.27 $41.55
3 $4.54 $48.74 $109.32
M=2 1 $9.02 $28.90 $34.43
2 $9.92 $48.67 $62.21
3 $5.23 $77.85 $208.85
M=3 1 $16.65 $53.20 $65.58
2 $22.15 $91.09 $120.97
3 $10.28 $140.26 $434.95
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Total Residual Value by RFM Segment

Recency
Frequency 0 1 2 3
M=0 0 $53,000
M=1 1 $7,700 $9,900 $1,800
2 $2,800 $15,300 $17,400
3 $300 $12,500 $52,900
M=2 1 $5,900 $7,600 $2,300
2 $3,600 $26,500 $25,800
3 $500 $37,200 $203,000
M=3 1 $11,300 $19,700 $3,700
2 $7,300 $45,900 $47,900
3 $1,000 $62,700 $414,900
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An Alternative to the Pareto/NBD Model

- Estimation of model parameters can be a barrier to
Pareto/NBD model implementation
- Recall the dropout process story:
- Each customer has an unobserved “lifetime”

- Dropout rates vary across customers

- Let us consider an alternative story:

- After any transaction, a customer tosses a coin
heads — remain active
tails — become inactive

- P(tails) varies across customers

191

The BG/NBD Model
(Fader, Hardie and Lee 2005c)

Purchase Process:

- While active, # transactions made by a customer follows a
Poisson process with transaction rate A.

- Heterogeneity in transaction rates across customers is
distributed gamma(r, x).

Dropout Process:

- After any transaction, a customer becomes inactive with
probability p.

- Heterogeneity in dropout probabilities across customers is
distributed beta(a, b).
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BG/NBD Likelihood Function

We can express the model likelihood function as:
L(r’ O(’ a”b | x’ tx, T) = Al ) A2 ) (A3 + 6X>OA4)

where

I'r + x)x"
Al = ——
I'(r)
A I'(a+b)I'(b+ x)
2 =
I'(b)I'(a +b + x)
1 r+x
M= ()
x+ T
a 1 r+x
A= (o) ()
b+x -1/ ‘x+ty
193
BGNBD Estimation
A | B | ¢ | b J E | F T & T H T 1
1 |r 0.243
2 |alpha 4.414 |=GAMMALN(B$1+B8)- =IF(B8>0,LN(B$3)-LN(B$4+B8-1)-
3 |a 0.793 |GAMMALN(B$1)+B$1*LN(B$2) (B$1+B8)*LN(B$2+C8),0)
4 |o 2.426
5 |LL 9582.4 [=(B$1+B8)'LN(B$2+D8) | ¢
6
7 ID X tx T In())  IN(A_1) In(A_2) yIn(A_3) In(A_4)
8 0001 2 30.43 38.86,, -9.4596 -0.8390 _ -0.4910  -8.4489 -9.4265
9 0002 1 1.71 38 44711 -1.05 -0.2828/ -4.6814  -3.3709
10 =SUM(E8:E2364) 0.00 8.86/ -0.5538 4602 0.0000 -0.9140  0.0000
11 0002 0 0.00 38.86 -0.5538 " 0.3602  0.0000 -0.9140  0.0000
12 " ccod _aa aaana sn 900
151 | =F8+GB+LN(EXP(HB)+(B8>0)'EXP(8)) | | _GAMMALN(BS3+B$4)+GAMMALN(BS4+B8)- bog
14 0007 1 5.00 38.86 GAMMALN(B$4)-GAMMALN(B$3+B$4+B8) a3
15 0008 0 0.00 38.86 U ; ; - 0000
16 0009 2 35.71 38.86 -9.5367| -0.8390 -0.4910 -8.4489  -9.7432
17 0010 _ __ 0___000_ 3886 _-05538 _ 0.3602_ _ 0.0000 _-0.9140 __ 0.0000
2362 2355 0.00 27000 -0.4761]  0.3602  0.0000 -0.8363  0.0000

2363 2356 4 26.57 27.00 -14.1284 1.1450 -0.7922 -14.6252 -16.4902
2364 2357 0 0.00 27.00  -0.4761 0.3602 0.0000  -0.8363 0.0000
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Model Estimation Results

BG/NBD Pareto/NBD

v 0.243 0.553
10 4414 10.578
a 0.793

b 2.426

S 0.606
B 11.669
LL —-9582.4 -9595.0

195

Frequency of Repeat Transactions
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Tracking Cumulative Repeat Transactions
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Conditional Expectations

~
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o

3
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Computing DERT for the BG/NBD

- It is very difficult to solve
DERT - J E[L()IS(t |t > T)d(t — T)dt
T

when the flow of transactions is characterized by the
BG/NBD.

- It is easier to compute DERT in the following manner:

o0

1 i-0.5
DERT = — E|X(T, T+1)|x,tsx, T
;<1+d> { [ +1) | x,tx, T]

—E[X(T,T+i-1)|x,t,Tl}
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Further Reading

Schmittlein, David C., Donald G. Morrison, and Richard Colombo
(1987), “Counting Your Customers: Who They Are and What Will
They Do Next?” Management Science, 33 (January), 1-24.

Fader, Peter S. and Bruce G.S. Hardie (2005), “A Note on
Deriving the Pareto/NBD Model and Related Expressions.”
<http://brucehardie.com/notes/009/>

Fader, Peter S., Bruce G.S. Hardie, and Ka Lok Lee (2005a), “A
Note on Implementing the Pareto/NBD Model in MATLAB.”
<http://brucehardie.com/notes/008/>
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Further Reading

Fader, Peter S., Bruce G.S. Hardie, and Ka Lok Lee (2005b), “RFM
and CLV: Using Iso-value Curves for Customer Base Analysis,”
Journal of Marketing Research, 42 (November), 415-430.

Fader, Peter S., Bruce G.S. Hardie, and Ka Lok Lee (2005c¢),
“"Counting Your Customers" the Easy Way: An Alternative to
the Pareto/NBD Model,” Marketing Science, 24 (Spring), 275-284.

Fader, Peter S., Bruce G.S. Hardie, and Ka Lok Lee (2005d),
“Implementing the BG/NBD Model for Customer Base Analysis
in Excel.” <http://brucehardie.com/notes/004/>
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Further Reading

Fader, Peter S., Bruce G.S. Hardie, and Ka Lok Lee (2007),
“Creating a Fit Histogram for the BG/NBD Model .”
<http://brucehardie.com/notes/014/>

Fader, Peter S. and Bruce G.S. Hardie (2004), “Illustrating the
Performance of the NBD as a Benchmark Model for
Customer-Base Analysis.”
<http://brucehardie.com/notes/005/>

Jerath, Kinshuk, Fader, Peter S., and Bruce G.S. Hardie (2009),
“New Perspectives on Customer ‘Death’ Using a Generalization
of the Pareto/NBD Model.” <http://papers.ssrn.com/sol13/
papers.cfm?abstract_id=995558>
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Beyond the Basic Models

204



Implementation Issues

- Handling multiple cohorts
- treatment of acquisition
- consideration of cross-cohort dynamics

- Implication of data recording processes
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Implications of Data Recording Processes
(Contractual Settings)

Cohort Calendar Time —
1 nyp M2 N3 ... Ny
2 No>» MNp3 ... MN2I
3 N33 ... N3y
I ni
ni no ns ..o N
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Implications of Data Recording Processes
(Contractual Settings)

Cohort Calendar Time — Cohort Calendar Time —
1 npp niy I np
2 npp npp 2 npp
I-1 np_1,1-1 M-1,1 I-1 np-1,1-1
1 nyy I nyy
nyp np ... nj1 ng
Cohort Calendar Time — Cohort Calendar Time —
1 nig 1 ni-1 N
2 npp 2 npr-1 M2
I-1 nr_1,1 -1 nr_1,1-1 M-1,1
1 nyy I nyy
nyg np ... nj1 ng
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Implications of Data Recording Processes
(Noncontractual Settings)

D-1
D=2 |
D=3 |
D=n
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Implications of Data Recording Processes
(Noncontractual Settings)

Period
ID 1 2 3 4
1 2 0 3 1
2 0 1 0 1
3 0 1 0 O
n 1 0O 0 2

Period 1 Period 2
01 2 3 45 6 7+ 01 2 3 4 5 6 7+
Period 3 Period 4

01 2 3 45 6 7+

01 2 3 45 6 7+

Implications of Data Recording Processes
(Noncontractual Settings)

The model likelihood function must match the data

structure:

. Interval-censored individual-level data

Fader, Peter S. and Bruce G. S. Hardie (2005), “Implementing the
Pareto/NBD Model Given Interval-Censored Data .”
<http://brucehardie.com/notes/011/>

- Period-by-period histograms (RCSS)

Fader, Peter S., Bruce G.S. Hardie, and Kinshuk Jerath (2007),
“Estimating CLV Using Aggregated Data: The Tuscan Lifestyles
Case Revisited .” Journal of Interactive Marketing, 21 (Summer),

55-71.



Model Extensions

- Duration dependence
- individual customer lifetimes

- interpurchase times

- Nonstationarity

- Covariates

211

Individual-Level Duration Dependence

- The exponential distribution is often characterized as
being “memoryless”.

- This means the probability that the event of interest
occurs in the interval (t,t + At] given that it has not
occurred by t is independent of t:

P(t<T<t+At)|T>t)=1—-e A,

- This is equivalent to a constant hazard function.
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The Weibull Distribution

- A generalization of the exponential distribution that
can have an increasing and decreasing hazard function:

Fit)=1-e M A,c>0
h(t) = cAtc!

where c is the “shape” parameter and A is the “scale”
parameter.

- Collapses to the exponential when ¢ = 1.

- F(t) is S-shaped for ¢ > 1.
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The Weibull Hazard Function

h(t)

h(t) = cAtc™!

- Decreasing hazard function (negative duration dependence) when
c < 1.

- Increasing hazard function (positive duration dependence) when
c > 1.
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Individual-Level Duration Dependence

- Assuming Weibull-distributed individual lifetimes and
gamma heterogeneity in A gives us the Weibull- gamma
distribution, with survivor function

stirao - (35)

- DERL for a customer with tenure s is computed by

solving
[e's) c\YV
J <a+s ) o 3(t-5) 4
s \X+t°

using standard numerical integration techniques.
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Individual-Level Duration Dependence

- In a discrete-time setting, we have the discrete Weibull
distribution:
S(t10,c)=(1-0).

- Assuming heterogeneity in 0 follows a beta
distribution with parameters (x, ), we arrive at the
beta-discrete-Weibull (BdW) distribution with survivor
function:

1
ﬂum&a=Lsmaammaﬁme

_ B(e,B+t°)
~ B(, B)
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Nonstationarity

“Buy then die” < latent characteristics governing
purchasing are constant then become 0.

Perhaps more realistic to assume that these latent
characteristics can change over time.

Nonstationarity can be handled using a hidden Markov

model

Netzer, Oded, James Lattin, and V. Srinivasan (2008), “A Hidden Markov
Model of Customer Relationship Dynamics,” Marketing Science, 27
(March-April), 185-204.

or a (dynamic) changepoint model

Fader, Peter S., Bruce G.S. Hardie, and Chun-Yao Huang (2004), “A
Dynamic Changepoint Model for New Product Sales Forecasting,”
Marketing Science, 23 (Winter), 50-65.
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Covariates
Types of covariates:

- customer characteristics
- customer attitudes and behavior
- marketing activities

Handling covariate effects:

- explicit integration (via latent characteristics and hazard
functions)

Schweidel, David A., Peter S. Fader, and Eric T. Bradlow (2008), “Understanding Service
Retention Within and Across Cohorts Using Limited Information,” Journal of Marketing, 72
(January), 82-94.

- used to create segments (and apply no-covariate models)

Need to be wary of endogeneity bias and sample
selection effects
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The Cost of Model Extensions

- No closed-form likelihood functions; need to resort to
simulation methods.

- Need full datasets; summaries (e.g., RFM) no longer
sufficient.
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Philosophy of Model Building
- Keep it as simple as possible

- Minimize cost of implementation

- use of readily available software (e.g., Excel)

- use of data summaries

- Purposively ignore the effects of covariates (customer
descriptors and marketing activities) so as to highlight

the important underlying components of buyer
behavior.
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Central Tenet
Traditional approach
future = f(past)

Past , Future

latent
characteristics

(0)

Probability modelling approach
0 = f(past) — future = f(0)
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Classifying Customer Bases

Grocery purchases Credit card

Continuous Doctor visits Student mealplan

Hotel stays Mobile phone usage
Opportunities for
Transactions
Event attendance Magazine subs

Discrete Prescription refills Insurance policy

Charity fund drives Health club m’ship

Noncontractual Contractual

Type of Relationship With Customers
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