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Customer-Base Analysis

- Faced with a customer transaction database, we may
wish to determine

— which customers are most likely to be active in the
future,

- the level of transactions we could expect in future
periods from those on the customer list, both
individually and collectively, and

- individual customer lifetime value (CLV).

- Forward-looking/predictive versus descriptive.

Traditional Modelling Approach

The transaction data are split into two consecutive periods:

- Data from the second period are used to create the
dependent variable of interest (e.g., buy/not-buy,
number of transactions, total spend).

- Data from the first period are used to create the
predictor variables.

- Period 1 behavior is frequently summarized in terms of
the customer’s “RFM” characteristics: recency (time of
most recent purchase), frequency (number of
purchases), and monetary value (average spend per
transaction).



Comparison of Modelling Approaches

Traditional approach
future = f(past)

Past : Future
Period 1 Period 2 Period 3 Period 4
X | y
y =f(B x)
x f(B,x)
7 F£(B,?7?)

Comparison of Modelling Approaches

In addition to the problem of having to predict Period 3
behavior in order to predict Period 4 behavior (and so on),
the traditional approach has other limitations:

- The regression-type models are ad hoc in nature; there
is no well-established theory. (Why use RFM? Is the fact
that “it works” a good enough reason?)

- The observed behavioral variables (e.g., RFM) are only
imperfect indicators of underlying behavioral
characteristics. Different “slices” of the data will yield
different values of the variables and therefore different
parameter estimates ... and different forecasts.
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Comparison of Modelling Approaches

Traditional approach
future = f(past)

Past : Future

Y

latent
characteristics

(0)

Probability modelling approach
0 = f(past) — future = f(0)

Classifying Business Settings

Consider the following two statements regarding the size of a
company’s customer base:

- Based on numbers presented in a news release that reported
Vodafone Group PIc’s results for the six months ended 30
September 2012, we see that Vodafone UK has 10.8 million
“pay monthly” customers.

- In his “Q3 2012 Earnings Conference Call,” the CFO of
Amazon made the comment that “[aJctive customer
accounts exceeded 188 million,” where customers are
considered active when they have placed an order during
the preceding twelve-month period.



Classifying Business Settings

- It is important to distinguish between contractual and
noncontractual settings:

- In a contractual setting, we observe the time at which a
customer ended their relationship with the firm.

- In a noncontractual setting, the time at which a customer
“dies” is unobserved (i.e., attrition is latent).

- The challenge of noncontractual markets:

How do we differentiate between those customers
who have ended their relationship with the firm
versus those who are simply in the midst of a long
hiatus between transactions?

Classifying Business Settings
Consider the following four specific business settings:
- Airport VIP lounges
- Electrical utilities
- Academic conferences

- Mail-order clothing companies.
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Classifying Customer Bases

Grocery purchasing Credit cards
Continuous Doctor visits Utilities
Hotel stays Continuity programs
Opportunities for
Transactions
Conf. attendance Magazine subs
Discrete Prescription refills Insurance policies
Charity fund drives “Friends” schemes
Noncontractual Contractual

Type of Relationship With Customers

Adapted from: Schmittlein, David C., Donald G. Morrison, and Richard Colombo (1987), “Counting Your Customers: Who Are
They and What Will They Do Next?” Management Science, 33 (January), 1-24.
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Classifying Customer Bases

Further dimensions of possible interest in contractual
settings:

Is usage while under contract observed or unobserved?

Is the revenue associated with the contract known in
advance or not known in advance?

These factors may be determined by technology and the
firm’s pricing policies.

Adapted from: Ascarza, Eva (2009), Modeling Customer Behavior in Contratual Settings, unpublished Ph.D thesis,
University of London.
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The Right Way to Think About Computing
Customer Lifetime Value
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Calculating CLV

Customer lifetime value is the present value of the future
cash flows associated with the customer.

- A forward-looking concept

- Not to be confused with (historic) customer
profitability
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Calculating CLV

Standard classroom formula:

T t
”
CLV = t:ZO mm
where m = net cash flow per period (if alive)
¥ = retention rate
d = discount rate
T = horizon for calculation
15
Calculating E(CLV)

A more correct starting point:
E(CLV) = J E[v(H)1S(Hd(t)dt
0

where E[v(t)] = expected value (or net cashflow) of
the customer at time ¢ (if alive)

S(t) = the probability that the customer is
alive beyond time t

d(t) = discount factor that reflects the
present value of money received at
time t

16



Calculating E(CLV)
- Definitional; of little use by itself.

- We must operationalize E[v ()], S(t), and d(f) in a
specific business setting ... then solve the integral.

- Important distinctions:

- Expected lifetime value of an as-yet-to-be-acquired
customer

- Expected lifetime value of a just-acquired customer

- Expected residual lifetime value, E(RLV), of an
existing customer
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Calculating E(CLV)

- The expected lifetime value of an as-yet-to-be-acquired
customer is given by

E(CLV) = JOOO Elv(t)]S(t)d(t)dt

- Standing at time T, the expected residual lifetime value
of an existing customer is given by

E(RLV) = JOOE[v(t)]S(t 't > T)d(t — T)dt
T
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Review of Probability Models

19

“Winwood Reade is good upon the subject,” said Holmes.
“He remarks that, while the individual man is an insoluble
puzzle, in the aggregate he becomes a mathematical
certainty. You can, for example, never foretell what any
one man will do, but you can say with precision what an
average number will be up to.”

Sir Arthur Conan Doyle, The Sign of Four.
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The Logic of Probability Models

- The actual data-generating process that lies behind any
given data on buyer behavior embodies a huge number
of factors.

- Even if the actual process were completely
deterministic, it would be impossible to measure all the
variables that determine an individual’s buying
behavior in any setting.

= Any account of buyer behavior must be expressed
in probabilistic/random/stochastic terms so as to
account for our ignorance regarding (and/or lack
of data on) all the determinants.
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The Logic of Probability Models

- Rather than try to tease out the effects of various
marketing, personal, and situational variables, we
embrace the notion of randomness and view the
behavior of interest as the outcome of some
probabilistic process.

- We propose a model of individual-level behavior that is
“summed” across individuals (taking individual
differences into account) to obtain a model of
aggregate behavior.
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Applications of Probability Models

- Summarize and interpret patterns of market-level
behavior

- Predict behavior in future periods, be it in the
aggregate or at a more granular level (e.g., conditional
on past behavior)

- Make inferences about behavior given summary
measures

- Profile behavioral propensities of individuals

- Generate benchmarks/norms
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Building a Probability Model

i) Determine the marketing decision problem/
information needed.

ii) Identify the observable individual-level behavior of
interest.
- We denote this by x.
iii) Select a probability distribution that characterizes this
individual-level behavior.
- This is denoted by f(x|0).

- We view the parameters of this distribution as
individual-level latent traits.
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Building a Probability Model

iv) Specify a distribution to characterize the distribution
of the latent trait variable(s) across the population.

- We denote this by g(0).

— This is often called the mixing distribution.

v) Derive the corresponding aggregate or observed
distribution for the behavior of interest:

Flx) = jf(x|9>g(9)d9

25

Building a Probability Model

vi) Estimate the parameters (of the mixing distribution) by
fitting the aggregate distribution to the observed data.

vii) Use the model to solve the marketing decision
problem/provide the required information.
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“Classes” of Models

- We focus on three fundamental behavioral processes:
- Timing — “when /how long”
- Counting — “how many”
- “Choice” — “whether /which”

- Our toolkit contains simple models for each behavioral
process.

- More complex behavioral phenomena can be captured
by combining models from each of these processes.

27

Individual-level Building Blocks

Count data arise from asking the question, “How many?”.
As such, they are non-negative integers with no upper
limit.

Let the random variable X be a count variable:

X is distributed Poisson with mean A if

Axe—A

PIX=x|0) =",

x=0,1,2,...
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Individual-level Building Blocks

Timing (or duration) data are generated by answering
“when” and “how long” questions, asked with regards to a
specific event of interest.

The models we develop for timing data are also
used to model other non-negative continuous
quantities (e.g., transaction value).

Let the random variable T be a timing variable:

T is distributed exponential with rate parameter A if

F(t|AD)=P(T<t|Ad)=1—-e t>0.

29

Individual-level Building Blocks

A Bernoulli trial is a probabilistic experiment in which
there are two possible outcomes, ‘success’ (or ‘1’) and
‘failure’ (or ‘0’), where 0 is the probability of success.

Repeated Bernoulli trials lead to the geometric and
binomial distributions.
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Individual-level Building Blocks

Let the random variable X be the number of independent
and identically distributed Bernoulli trials required until
the first success:

X is a geometric random variable, where

PX=x]0)=01-0)*"' x=1,2,3,...

The geometric distribution can be used to model either
omitted-zero class count data or discrete-time timing data.
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Individual-level Building Blocks

Let the random variable X be the total number of
successes occurring in n independent and identically
distributed Bernoulli trials:

X is distributed binomial with parameter 0, where

P(X =x|n,0) = (:)QX(l—e)"X, x=012,....1m.

We use the binomial distribution to model repeated choice
data — answers to the question, “How many times did a
particular outcome occur in a fixed number of events?”
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Capturing Heterogeneity in Latent Traits

The gamma distribution:

gAlr, @) =

rAr—1,—aA
x"AT te A0

['(r)

- T'(-) is the gamma function

- 7 is the “shape” parameter and « is the “scale”

parameter

- The gamma distribution is a flexible (unimodal)

distribution ...

g)
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and is mathematically convenient.

IHlustrative Gamma Density Functions

1.5 -

1.0 +

0.5 1

1.0 4

0.5

15~

0.0

0.0

r=05«0=1
— — — r=1lL«a=1

r=2,x=1
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Capturing Heterogeneity in Latent Traits
The beta distribution:

90(—1(1 _ 9)[3—1

g0l p) = B, B) ,0<0<1.

- B(«, B) is the beta function, which can be expressed in
terms of gamma functions:

~ I'(e)I'(B)
Bl B) = I'(x+ B)

- The beta distribution is a flexible distribution ..

. and is
mathematically convenient
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INlustrative Beta Distributions

9(0)

x=5.0,8=5.0
- — — «=10,=1.0
——————— x=0.5pB=0.5
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Five General Shapes of the Beta Distribution

A

B

0.0 0.5 1.0

The Negative Binomial Distribution (NBD)

- The individual-level behavior of interest can be
characterized by the Poisson distribution when the
mean A is known.

- We do not observe an individual’s A but assume it is
distributed across the population according to a
gamma distribution.

PX=x|r,x) = J:P(X =x|A)g(A|r,x)dA
_T(r+x) o \" 1 \*
- T(r)x! <o<+1> <o<+1> '
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The Pareto Distribution of the Second Kind

- The individual-level behavior of interest can be
characterized by the exponential distribution when the
rate parameter A is known.

- We do not observe an individual’s A but assume it is
distributed across the population according to a
gamma distribution.

F(t|7r,x) =JOOOF(t|A)g(/\|r,0()dA
0( v
:1_(o<+t> '

39

The Beta-Geometric Model

- The individual-level behavior of interest can be
characterized by the geometric distribution when the
parameter 0 is known.

- We do not observe an individual’s € but assume it is
distributed across the population according to a beta
distribution.

1
P(X = x| o B) =JOP(X=x|9)g(9|(x,[3)d9

_ Blax+1,p+x—1)
- B(a, B)
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The Beta-Binomial Distribution

- The individual-level behavior of interest can be

characterized by the binomial distribution when the

parameter 0 is known.

- We do not observe an individual’s 0 but assume it is

distributed across the population according to a beta

distribution.

1
P(szln,(x,ﬂ)=JOP(X=x|n,9)g(9|o<,B)d9

X

41

B (n)B(a+x,/3+n—x)
N B(«x,B) '

Summary of Probability Models

Phenomenon Individual-level Heterogeneity = Model
Counting Poisson gamma NBD
Timing exponential gamma Pareto II
Discrete timing geometric beta BG

(or counting)

Choice binomial beta BB
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Illustrative Integrated Models

- Counting + Timing
- catalog purchases (purchasing | “alive” & “death” process)

- “stickiness” (# visits & duration/visit)

- Counting + Counting
- purchase volume (# transactions & units/transaction)

- page views/month (# visits & pages/visit)

- Counting + Choice

- brand purchasing (category purchasing & brand choice)

- “conversion” behavior (# visits & buy/not-buy)
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A Template for Integrated Models

Stage 2

Counting  Timing Choice

Counting

Stage 1  Timing

Choice
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Integrated Models

- The observed behavior is a function of sub-processes
that are typically unobserved:

f(x101,02) = f(fi(x1101), f2(x2102)).

- Solving the integral
fo0) = || £x101,0:)91(0)92(02) do, o,

often results in an intermediate result of the form

1

= constant x I t2(1 — )P (u + vt) cdt
0
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The “Trick” for Integrated Models

Using Euler’s integral representation of the Gaussian
hypergeometric function, we can show that

1
J t2(1 — )P (u + vt) cdt
0

Ba+1,b+1)u°¢
xoFi(c,a+L;a+b+2;-7), lvl<u

Ba+1,b+1)(u+v)°¢

xoFi(c,b+La+b+2,—=), lvl=zu

where > F; (-) is the Gaussian hypergeometric function.
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The Gaussian Hypergeometric Function

JFy(a, b c; z) = —16) ; D [(a+j)Tb+j)z
i=0

T(a)T(b Tc+j)  J!

Easy to compute, albeit tedious, in Excel as
2Fi(a,b;c;2) = > u;
j=0

using the recursion

w, _(a+j-Db+j-1)
Uj-1 (C-I—j—l)j

z,j=1,2,3,...

where ug = 1.

47

Models for Contractual Settings
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Classifying Customer Bases

Grocery purchasing Credit cards
Continuous Doctor visits Utilities
Hotel stays Continuity programs
Opportunities for
Transactions
Conf. attendance Magazine subs
Discrete Prescription refills Insurance policies
Charity fund drives “Friends” schemes
Noncontractual Contractual

Type of Relationship With Customers
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IIlustrative Contractual Setting

1000 customers are acquired at the beginning of Year 1
with the following pattern of renewals:

Year 1 Year 2 Year 3 Year 4

1000 631 468 382

Assume:

- Each contract is annual, starting on January 1 and
expiring at 11:59pm on December 31

- An average net cashflow of $100/year, which is
“booked” at the beginning of the contract period

- A 10% discount rate

50



Motivating Questions

- What is the maximum amount you would spend to
acquire a customer?

- What is the expected residual value of this group of
customers at the end of Year 47

51

Spending on Customer Acquisition

Year 1 Year 2 Year 3 Year 4

Net CF §$1oo §$1oo ;$1oo §$100
P(alive) ' 1.000 ' 0.631 ' 0.468 ' 0.382

discount :  1.000 ; (1+0.1) ; (1+o.1)2§ (1+0.1)3
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Spending on Customer Acquisition

For a randomly chosen customer,

E(CLV) = $100 + $100 x %
0.468 0.382
= $225

= We can justify spending up to $225 to acquire a
new customer (based on expected “profitability”
over the four year period).

53

Looking to the Future

1.0 - 1.0 -

0.8 - 09 -

0.6 - 84 ===
S(t) Tt

04 - 0.7 -

02 T~ 0.6 -

Year Year
The retention rate for period t (7;) is the proportion of
customers who were alive in period t who renewed their
contract at the next opportunity.

e =S(t)/S(t—-1) < S({t)=S({t—-1) xX71r;
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Spending on Customer Acquisition

E(CLV) = $100 + $100 x %

0.468 0.382
1.1)2 + $100 x 1.1)3
0.382 x 0.816

(1.1)4
0.382 x 0.816%

(1.1)>

+ $100 x

+ $100 x

+ $100 x

= $307

—> Looking beyond Year 4, we can justify spending
up to $82 more to acquire a customer.

55

Residual Value of the Customer Base

Year 4 Year 5 Year 6 Year 7

Y

[ I I | |
/
Net CF 1$100 $100 $100 ;
P(alive) ' 0.816 ! 0.816% ! 0.8163 | -
discount | 1000 1 (1+0.0) 1 (1+0.1)21 -
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Residual Value of the Customer Base

For a randomly chosen customer,

0.8162

(]

0.816¢
= $100 x > 14000

t=1

= $316

—> The expected residual value of the group of
customers at the end of Year 4 is 382 x $316 =
$120,712.

57

What’s wrong with this analysis?
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Projecting Retention

How valid is the assumption of a constant retention rate

beyond the observed data?

Tt

At the cohort level, we (almost) always observe increasing

1.0 - 1.0
0.9 - T 0.8 -
0.8 - f e = 0.6 -
S(t)
0.7 - 0.4 - .
0.6 0.2 ~TT
05 T T T T T T T T 00 T T T T T T T T
01 2 3 4 5 6 7 01 2 3 4 5 6 7
Year Year

retention rates (and a flattening survival curve).
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Renewal rates at regional magazines vary; generally
30% of subscribers renew at the end of their
original subscription, but that figure jumps to 50%
for second-time renewals and all the way to 75% for
longtime readers.

Fielding, Michael (2005), “Get Circulation Going: DM Redesign Increases Renewal
Rates for Magazines,” Marketing News, September 1, 9-10.

New subscribers are actually more likely to cancel
their subscriptions than older subscribers, and
therefore, an increase in subscriber age helps
overall reductions in churn.

Netflix (10-K for the fiscal year ended December 31, 2005)
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Vodafone Germany
Quarterly Annualized Churn Rate (%)

20 - \/\/____\

10 4

0 I I I I I I I T
Q2 02/03 Q302/03 Q402/03 Q103/04 Q203/04 Q303/04 Q403/04 QI 04/05

Source: Vodafone Germany “Vodafone Analyst & Investor Day” presentation (2004-09-27)
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I am happy to report that 41% of new members who
joined in 2011 renewed their membership in 2012,
and that ION has an overall retention of 78%.

ION Newsletter, Winter 2011-2012.
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Cohort-level vs. Aggregate Numbers

YrO0l Yr02 Yr03 Yr04 YrO5 Yr06 Yr07 Yr08 Yr09 VYr10 VYr1l VYr12 VYr13 Yr14 Yr15 Yr1l6 Yrl7 Yr18 Yr19 Yr20
Yr01 1000 629 471 382 324 283 252 228 208 192 179 167 157 148 140 133 127 122 117 112
Yr02 1000 629 471 382 324 283 252 228 208 192 179 167 157 148 140 133 127 122 117
Yr 03 1000 629 471 382 324 283 252 228 208 192 179 167 157 148 140 133 127 122
Yr 04 1000 629 471 382 324 283 252 228 208 192 179 167 157 148 140 133 127
Yr 05 1000 629 471 382 324 283 252 228 208 192 179 167 157 148 140 133
Yr 06 1000 629 471 382 324 283 252 228 208 192 179 167 157 148 140
Yro7 1000 629 471 382 324 283 252 228 208 192 179 167 157 148
Yr 08 1000 629 471 382 324 283 252 228 208 192 179 167 157
Yr 09 1000 629 471 382 324 283 252 228 208 192 179 167
Yr 10 1000 629 471 382 324 283 252 228 208 192 179
Yri1 1000 629 471 382 324 283 252 228 208 192
Yri2 1000 629 471 382 324 283 252 228 208
Yri3 1000 629 471 382 324 283 252 228
Yr 14 1000 629 471 382 324 283 252
Yri5 1000 629 471 382 324 283
Yr16 1000 629 471 382 324
Yr17 1000 629 471 382
Yr18 1000 629 471
Yr 19 1000 629
Yr 20 1000
Total 1000 1629 2100 2482 2806 3089 3341 3569 3777 3969 4148 4315 4472 4620 4760 4893 5020 5142 5259 5371
63
Cohort-level vs. Aggregate Numbers

Yr01 Yr02 Yr03 Yr04 Yr05 Yr06 YrO7 Yr08 Yr09 Yr10 Yrl1l Yr12 Yr13 Yr14 Yr15 Yr16 Yr17 Yr18 Yr19 Yr20
Yr 01 -~ 0.629 0.749 0.811 0.848 0.873 0.890 0.905 0.912 0.923 0.932 0.933 0.940 0.943 0.946 0.950 0.955 0.961 0.959 0.957
Yr 02 - 0629 0.749 0.811 0.848 0.873 0.89 0.905 0912 0.923 0932 0.933 0.94 0.943 0.946 0.95 0.955 0.961 0.959
Yr03 - 0.629 0.749 0.811 0.848 0.873 0.89 0905 0.912 0.923 0932 0933 094 0943 0946 0.95 0.955 0.961
Yr 04 - 0.629 0.749 0.811 0.848 0.873 0.89 0.905 0912 0.923 0.932 0.933 0.94 0.943 0.946 0.95 0.955
Yr 05 - 0.629 0.749 0.811 0.848 0.873 0.89 0.905 0912 0923 0.932 0.933 094 0943 0946 0.95
Yr 06 - 0629 0.749 0.811 0.848 0.873 0.89 0.905 0.912 0.923 0.932 0.933 0.94 0.943 0.946
Yr 07 - 0629 0.749 0811 0.848 0.873 0.89 0905 0.912 0.923 0932 0.933 0.94 0.943
Yr 08 - 0.629 0.749 0.811 0.848 0.873 0.89 0.905 0.912 0.923 0.932 0933 094
Yr 09 - 0629 0.749 0.811 0.848 0.873 0.89 0905 0.912 0.923 0.932 0.933
Yr 10 - 0629 0749 0.811 0.848 0.873 0.89 0.905 0.912 0.923 0.932
Yr11 - 0629 0749 0.811 0.848 0.873 0.89 0.905 0.912 0.923
Yr12 - 0629 0749 0.811 0.848 0.873 0.89 0.905 0.912
Yri3 - 0.629 0.749 0.811 0.848 0.873 0.89 0.905
Yr 14 - 0.629 0749 0.811 0.848 0.873 0.89
Yr 15 - 0629 0.749 0.811 0.848 0.873
Yr 16 - 0629 0749 0.811 0.848
Yr17 - 0.629 0.749 0.811
Yr18 - 0.629 0.749
Yr 19 - 0.629

Yr 20 -
Aggregate --  0.629 0.675 0.706 0.728 0.744 0.758 0.769 0.778 0.786 0.793 0.799 0.805 0.809 0.814 0.818 0.822 0.825 0.828 0.831
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Cohort-level vs. Aggregate Numbers

1.0 ~
0.9 A
0.8 A

0.7 A -

Retention Rate

—— Cohort-specific — - Aggregate

05 r—r——rr—T1Tr—1T—T1T 17 1T "7 "7 "“"T" "7 “"T T
1 2 3 45 6 7 8 910111213141

T
5161718 19

Year
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Why Do Retention Rates Increase Over Time?

Individual-level time dynamics:

- increasing loyalty as the customer gains more
experience with the firm, and/or

- increasing switching costs with the passage of
time.

VS.

A sorting effect in a heterogeneous population.

66



A Discrete-Time Model for Contract Duration

i. An individual remains a customer of the firm with
constant retention probability 1 — 0
— the duration of the customer’s relationship with
the firm is characterized by the geometric
distribution:

S(t|9)=(1-0), t=1,2,3,...

ii. Heterogeneity in 0 is captured by a beta distribution
with pdf
90(—1(1 _ 9)3—1

g0, p) = Bl B)

67

A Discrete-Time Model for Contract Duration
- The probability that a customer cancels their contract
in period ¢
1
P(T =tlaf) = | P(T=110)g(0],B)doO
0

_ Blax+1,p+t—-1)
- B(o, B) ’

- The aggregate survivor function is

t=1,2,...

1
ﬂﬂm&=LSGWMWMﬁM9

_ B(e,p+1)
B, B)

t=1,2,...

68



A Discrete-Time Model for Contract Duration

- The (aggregate) retention rate is given by

O S(@)

S S(t-1)

_ B+t-1

S x+B+t-1°

Tt

- This is an increasing function of time, even though the
underlying (unobserved) retention rates are constant at
the individual-level.
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A Discrete-Time Model for Contract Duration

We can compute BG probabilities using the following
forward-recursion formula from P(T = 1):

X
=1
x+ t
P(T=t|«x,B) =
B+t—2 . B
ko<+B+t—1P(T_t 1) t=2,3,...

We can compute the BG survivor function using the
retention rates:

t
Stle,B)=]]ri,t=1,2,3,..., where S(0) = 1.
i=1
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Fitting the BG Model

A B C D E
1 |alpha 0.784
2 |beta 1.333
3 |LL -1242.31
4
5 Year P(T=t) # Cust. # Lost
6 0 1000
7 1 0.3702 631 369 -366.64
8 2 0.1584 468 163 -300.39
9 3 0.0897 382 86 -207.33
10 -367.95

g(0)
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Distribution of Churn Probabilities

4_

0.00

0.25

0.50
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Computing E(CLV)

Recall: E(CLV) = J:E[v(t)]S(t)d(t)dt.

- In a contractual setting, assuming an individual’s mean
value per unit of time is constant (),

E(CLV) =v Joo S(t)yd(t)dt.
0

Y

discounted expected lifetime

- Standing at time s, a customer’s expected residual
lifetime value is

E(RLV) = ’DJOOS(t |t > s)d(t —s)dt .

-

discounted expected residual lifetime
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Computing DEL

Period 1 Period 2 Period n

0 1 2 n-1 n

- Standing at time O (i.e., before the customer is

acquired),

= S()
DEL(A|0) = > ———
21+ dy

1+d
ad+60-

- But 0 is unobserved ...
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Computing DEL

Integrating over the distribution of 0:

rl

DEL(d | &, B) = . DEL(d|0)g(0|x,B)do
(1 (1 +d> 0x-1(1 — 9)F-1

Jo\d+ 06 B(«x, B)

l+d (Mo -1 -1

— Bl g Jo O -0 d 1 0)7 o

=2F1(1,B;0<+3;ﬁ)-

do
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Computing DERL
Period 1 Period 2 Period n
| | —----- | —
0 1 2 n-1 / n

- Standing at the end of period n, just prior to the point
in time at which the customer makes her contract

renewal decision,

DERL(d | 0,n — 1 renewals) = > Stlt>n—-1;0)

= (d+d)tn
~(1-0)(1+4d)
N d+0 '

- But 0 is unobserved ....
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Computing DERL

By Bayes’ Theorem, the posterior distribution of 0 is

Sm-110)g(0|x,B)

g(0| o, B, — 1 renewals) =

Sm-1|«,p)
B 9a—1(1_9)3+n—2
- B(e,B+n-1)"°

which is a beta distribution with parameters « and
B+n-—1.
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Distributions of Churn Probabilities

\ —_— Prior

[P Posterior (3 renewals)

g(0)
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Computing DERL

Integrating over the posterior distribution of 0:

= DERL(d | &, B,n — 1 renewals)

1
— J {DERL(d | 0,n — 1 renewals)
0

Xxgolo,B,n-1 renewals)}d@

_ Jl (1-60)(1+d) 6% 1(1—-09)Bn-2
0

ada+ o0 B, +n—1) a0

1
~ B(x lliii— 1) Jo 0% 1(1-0)\"1(d+0)'do
-1
— (O(f——[;:tn—l>2Fl(1 B+ n; (x+[3+n,1+d)
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Alternative Derivation of Expression for DEL

DEL(d | &, B)

o S(tle, B)
Z (1 +d)t

B(x,B+t) 1\t
go B(«x, B) <1+d>

=2 Fi (LB o+ B g) -
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Alternative Derivation of Expression for DERL

DERL(d | &, B,n — 1 renewals)

Stlt>n-1;xB8)
(1+d)t—m

Sl pB) ( 1 )t—”
Sim-1],B)\1+d

M e

t=n

M e

t=n

B(x,B+t) ( 1 )t—"
B, B+n—-1)\1+d

B+n-1
x+B+n-1

I
gk

~

=n

>2F1(1 B+ mn; o<+B+n,l+d)
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Computing DE(R)L Using Excel
- From the alternative derivations:

- S(tl«,B)
DEL(d| o, B) = D, —~——
2 (s d)i

DERL(d | &, B,n — 1 renewals)
- S(tle,B) 1 \t-n
; (1’1—1|0([3)<1+d>

- We compute S(t) from the BG retention rates:

t
S(t) = nri where 7; =

i=1

B+i-1
X+B+i—-1"
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Computing DE(R)L Using Excel

A | B | C | D | E | F | G | H

1 |alpha 0.784 DEL 3.597 DERL 5.171
2 |beta 1.333 —

3 d 10% =SUMPRODUCT(C6:C206,E6:E206)

4 3 renewals (n=4)

5 t rt S(t) disc. S(t|t>n-1) disc.

6 0 1.0000 1.0000

7 1 0.6298 0.6298 0.9091 =1/(1+SBS3)AA7

8 >~ 07485 n4714 0.8264 ( )

9 || =(BS$2+A7-1)/(BS1+BS2+A7-1) 0.7513

10 T U.3463 U.3232 =C10/$CS9 —  0.8468 1.0000
11 5 0.8719 0.2818 UTOZUT 0.7383 0.9091
12 6 0.8899 0.2508 0.5645 0.6570 0.8264
13 7 0.9034 0.2265 ~_ 0.5132 0.5936 0.7513
14 8 0.9140 0.20F 0.4665 0.5426 0.6830
15 9 09225 0.19] =C12*B13 0.4241 0.5005  0.6209
161 10/ 09295 01776 | 0385 _ 04652 _ 05645
202 196 0.9960 0.0188 7.71E-09 0.0492 1.13E-08
203 197 0.9960 0.0187 7.01E-09 0.0490 1.03E-08
204 198 0.9961 0.0186 6.37E-09 0.0488 9.33E-09
205 199 0.9961 0.0186 5.79E-09 0.0486 8.48E-09
206 200 0.9961 0.0185 5.27E-09 0.0485 7.71E-09
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Comparing Approaches
Model Naive Underestimation
E(CLV) $360 $307 15%
E(RLV) $517 $316 64%

The naive estimates will always be lower than those of
the BG model.

The driving factor is the degree of heterogeneity — see
Fader and Hardie (2010).

The error is especially problematic when computing
E(RLV) (and therefore when valuing a customer base).
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Validating the BG-based CLV Estimates
We actually have 12 years of renewal data.

- Examine the predictive performance of the underlying
BG model.

- Compare the naive and model-based estimates of
expected “lifetime” value against the actual average
values.

12
E(CLV) = $100 x >
t=0
12
R(CLV) = $100 x >
t=4

S(t)
(1.1)¢t

S(t|t > 3)
(1.1)t-+
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Survival Curve Projection

100
80 ~

60 -

% Surviving

40 -+

20 ~

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
3

Tenure (years)
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Projecting Retention Rates

Retention Rate

1.0 -
0.9 -
0.8 - |
|
|
0.7 - I
|
|
0.6 : — Actual
I - Model
|
0.5 T T I T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12
Tenure (years)
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Comparing Approaches
Infinite Horizon 12 Year Horizon
Model Naive Actual Model Naive
E(CLV) $360 $307 $331 $326 $302
E(RLV) $517 $316 $407 $387 $295

- The model-based estimates are very close to the actual
numbers ...while making use of only three renewal
observations!

- The undervaluation associated with the naive model
becomes increasingly severe over a longer time
horizon.
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Expressions for DE(R)L

Different points in time at which a customer’s discounted
expected (residual) lifetime can be computed:
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Expressions for DE(R)L
Case (i):
DEL(d | &, B) = 2F1 (1, B; & + B; 115
Case (ii):

DERL(d | &, B)

oFi(1L,B+ L0+ B+ 1; 1)

_ B
(x+B)(1+4d)
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Expressions for DE(R)L
Case (iii):

DERL(d | , B, alive for n periods)

B+n-1

= (HBHL_I2F1(1,3+n;0<+13+n;#)

1+d

Case (iv):

B+n

DERL(d | &, B, n contract renewals) = (x+B+n)(1+d)

X Fi(L,B+n+ L+ B+n+1;1)
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Further Reading

Fader, Peter S. and Bruce G.S. Hardie (2010), “Customer-Base
Valuation in a Contractual Setting: The Perils of Ignoring
Heterogeneity,” Marketing Science, 29 (January-February),
85-93. <http://brucehardie.com/papers/022/>

Fader, Peter S. and Bruce G.S. Hardie (2007), “Fitting the sBG
Model to Multi-Cohort Data.”
<http://brucehardie.com/notes/017/>
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From Discrete to Continuous Time

We have considered a setting where the discrete
contract period is annual.

In some cases, there is a quarterly contract period,
others monthly.

In a number of cases, the contract is effectively
“renewed” on a daily basis = “continuous” time.
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Classifying Customer Bases

Grocery purchasing Credit cards
Continuous Doctor visits Utilities
Hotel stays Continuity programs
Opportunities for
Transactions
Conf. attendance Magazine subs
Discrete Prescription refills Insurance policies
Charity fund drives “Friends” schemes
Noncontractual Contractual

Type of Relationship With Customers
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Contract Duration in Continuous-Time

i) The duration of an individual customer’s relationship
with the firm is characterized by the exponential
distribution with pdf and survivor function,

F(tIA) =Ae ™™
S(tIA) =e ™M

ii) Heterogeneity in A follows a gamma distribution with
pdf

e Ar—l e—a)\
['(r)

gAlr, o) =
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Contract Duration in Continuous-Time

This gives us the Pareto Type II model with pdf and
survivor function

Ftlr, o) = jo FEINGAr, o) dA
¥ o r+1
- & (a+t>
St|r,x) = J:S(H?\)g(?\“qa)d?\

- ((xity
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The Hazard Function

The hazard function, h(t), is defined by

Pt<T<t+At|T >
nt) = tim L4 L+ AT > 1)
At—0 At

_f@)
1 —F(t)

and represents the instantaneous rate of “failure” at time ¢t
conditional upon “survival” to t.

The probability of “failing” in the next small interval of
time, given “survival” to time ¢, is

Pt<T<t+At|T>t)=h(t) XAt
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The Hazard Function

- For the exponential distribution,

h(t|A) = A

- For the Pareto Type II model,

”
+t

h(t|r,x) = x

- In applying the Pareto Type II model, we are assuming
that the increasing retention rates observed in the
aggregate data are simply due to heterogeneity and not
because of underlying time dynamics at the level of the
individual customer.
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Computing DERL

- Standing at time s,
DERL = J St|t>s)d(t—-s)dt
S

- For exponential lifetimes with continuous
compounding at rate of interest 9,

(0]

DERL(S | A, tenure of at least s) = J e ME=5)p=0(1=5) ¢

s

- But A is unobserved ....
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Computing DERL

By Bayes’ Theorem, the posterior distribution of A for an
individual with tenure of at least s,
S(sIA)gA]r, x)
S5C|7r,x)
(0( + S)rAr—le—A(a+s)
N ['(r)

g(A| 7, &, tenure of at least s) =
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Computing DERL

It follows that
DERL(6 | 7, &, tenure of at least s)
= J {DERL(é | A, tenure of at least s)
0

X g(A |7, &, tenure of at least 5)}01)\

= (X+ )8 'Y, r;: (x+5)6)

where Y (-) is the confluent hypergeometric function of the
second kind.
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Models for Noncontractual Settings
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Classifying Customer Bases

Continuous

Opportunities for
Transactions

Discrete

Grocery purchasing
Doctor visits

Hotel stays

Credit cards
Utilities

Continuity programs

Conf. attendance
Prescription refills

Charity fund drives

Magazine subs
Insurance policies

“Friends” schemes

Noncontractual Contractual

Type of Relationship With Customers
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Setting

A charity located in the Midwestern United States that
is funded in large part by donations from individual
supporters.

Initial focus on 1995 cohort, ignoring donation amount:
- 11,104 people first-time supporters.

— This cohort makes a total of 24,615 repeat
donations (transactions) over the next 6 years.

- What level of support (# transactions) can we expect
from this cohort in the future?
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ID 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

100001 1 0 0 0 0 0 0 ? ? ? ? ?
100002 1 0 0 0 0 0 0 ? ? ? ? ?
100003 1 0 0 0 0 0 0 ? ? ? ? ?
100004 1 0 1 0 1 1 1 ? ? ? ? ?
100005 1 0 1 1 1 0 1 ? ? ? ? ?
100006 1 1 1 1 0 1 0 ? ? ? ? ?
100007 1 1 0 1 0 1 0 ? ? ? ? ?
100008 1 1 1 1 1 1 1 ? ? ? ? ?
100009 1 1 1 1 1 1 0 ? ? ? ? ?
100010 1 0 0 0 0 0 0 ? ? ? ? ?

111102 1 1 1 1 1 1 1 ? ? ? ? ?
111103 1 0 1 1 0 1 1 ? ? ? ? ?
111104 1 0 0 0 0 0 0 ? ? ? ? ?
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Modelling the Transaction Stream

Each year an individual decides whether or not to
support the charity by tossing a coin:

H — donate

T — don’t donate

1996 1997 1998 1999 2000 2001
1 0 1 1 0 0
H T H H T T

An individual tosses the same coin each year.

P(H) varies across individuals.
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Modelling the Transaction Stream

- The number of transactions in the interval {1, 2,...,n}
is distributed binomial,

P(X(n) =xlp) = (Z) p*(1-p)"*

- Transaction probabilities (p) are distributed across the
population according to a beta distribution:

p* (1 -p)F!
B(x,B)

dpla,B) =

107

Modelling the Transaction Stream
The distribution of transactions for a randomly chosen
individual is given by
1
P(X(m) = x|, B) = | P(X(n) = x| p)g(p| o, ) dp

_(n\Blx+x,B+n—x)
- \x B(«x, B) ’

which is the beta-binomial (BB) distribution.
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# Repeat Transactions

4,000

3,000

# People

1,000

2,000

Fit of the BB Model

- B Actual

0 1

o

# Repeat Transactions (1996 -2001)
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Tracking Cumulative Repeat Transactions

50,000

40,000

30,000

20,000

10,000

—=— Actual

I
I
--¢-- BB |
I
I
I

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Year
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# Repeat Transactions

Tracking Annual Repeat Transactions

6,000 ~

5,000 ~

4,000

3,000 -

2,000 -

1,000 ~

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 20

Year
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Towards a More Realistic Model

# Transactions

Time

112

T
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Towards a More Realistic Model
The “leaky bucket” phenomenon:

A harsh reality for any marketer is that regardless
of how wonderful their product or service is, or
how creative their marketing activities are, the
customer base of any company can be viewed as a
leaky bucket whose contents are continually
dripping away. Customer needs and tastes change
as their personal circumstances change over time,
which leads them to stop purchasing from a given
firm or even stop buying in the product category all
together. In the end, they literally die.
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Towards a More Realistic Model

# Transactions
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Modelling the Transaction Stream

A customer’s relationship with a firm has two phases: they
are “alive” for an unobserved period of time, then “dead.”
Transaction Process:

- While “alive,” a customer makes a transaction at any given
transaction opportunity following a “coin flip” process.

- Transaction probabilities vary across customers.

Latent Attrition Process:

- A “living” customer “dies” at the beginning of a transaction
opportunity following a “coin flip” process.

- “Death” probabilities vary across customers.
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Model Development

A customer’s relationship with a firm has two phases: they
are “alive” (A) then “dead” (D).

- While “alive,” the customer makes a transaction at any

given transaction opportunity with probability p:
P(Y; =1|p,aliveatt) =p

- A “living” customer “dies” at the beginning of a
transaction opportunity with probability 0

= P(alive at t| 0) = P(AA...A|0) = (1 - 0)!

t
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Model Development

Consider the following transaction pattern:

1996 1997 1998 1999 2000 2001
1 0 0 1 0 0

- The customer must have been alive in 1999 (and
therefore in 1996-1998)

- Three scenarios give rise to no purchasing in 2000 and
2001

1996 1997 1998 1999 | 2000 2001
A A A A D D
A A A A A D
A A A A A A
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Model Development

We compute the probability of the purchase string
conditional on each scenario and multiply it by the
probability of that scenario:

_ . . . 4
f(100100 | p,0) =p(1—-p)(1-p)p (1 -6)°0
P(AAAADD)

+p(l-p)A1-p)p(1-p)(1-0)0

P(AAAAAD)
6

_|_ — — — — —
pA-pU-pp1-p)l-p)(1-0)
P(Y1=1,Y>=0,Y3=0,Y4=1) P(AAAAAA)
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Model Development

- Bernoulli purchasing while alive = the order of a given
number of transactions (prior to the last observed
transaction) doesn’t matter. For example,

f(100100 | p,0) = £(001100]| p,0) = £(010100 | p, O)

- Recency (time of last transaction, t,) and frequency
(number of transactions, x = >, ; ;) are sufficient
summary statistics

= we do not need the complete binary string
representation of a customer’s transaction
history
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Summarizing Repeat Transaction Behavior

1996 1997 1998 1999 2000 2001 X tx n  #Donors
1 1 1 1 1 1 1 — ] 6 6 6 1203
2 1 1 1 1 1 0 5 6 6 728
3 1 1 1 1 0 1 5 5 6 335
4 1 1 1 1 0 0 4 6 6 512
5 1 1 1 0 1 1 4 5 6 284
6 1 1 1 0 1 0 4 4 6 240
7 1 1 1 0 0 1 3 6 6 357
3 5 6 225
3 4 6 181
3 3 6 322
2 6 6 234
2 5 6 173
2 4 6 155
2 3 6 255
2 2 6 613
1 6 6 129
1 5 6 119
1 4 6 79
1 3 6 129
1 2 6 277
62 0 0 0 0 0 1 1 6 1091
63 0 0 0 0 0 1 0 0 6 3464
64 0 0 0 0 0 0 11104
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Model Development

For a customer with purchase history (x, t,, n),

Lp,0|x,tx,n) =p*Q1-p)" > -0)"

n—ty—1

+ Z pX(l _ p)tx—x+i9(1 _ Q)tx+i
i=0

We assume that heterogeneity in p and 0 across customers
is captured by beta distributions:

_pXta-p)Ft!
gploe,B) = B, B)

B 93/—1(1 _ 9)5—1
gy, o) = B(y.0)
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Model Development

Removing the conditioning on the latent traits p and 0,

L(O(,B,y,5|x,tx,n)

1 1
:JO JOL(p,9|x,tx,n)g(l9|%B)g(9|)’,5) dp do

:B(a+x,B+n—x)B(y,5+n)

B(O(,E) B()’,(S)
+n—§—13(a+x,/3+tx—x+i)B(y+1,5+tx+i)
= B(x, B) B(y, o)

... which is (relatively) easy to code-up in Excel.

122



A [ B c | o [ E T F G H I ) [ M N

L 11 alpha 1204 Blalpha,beta) 1.1 | -EXP(GAMMALN(B1)+GAMMALN(B2) GAMMALN(B1+B2)) |
| 2| beta 0.750
| 3| samma 0.657 B(gamma,delta) 0.729
4] delta 2.783 =EXP(GAMMALN($B$1+A9)+GAMMALN($B$2+C9-A9)-

5 GAMMALN($B$1+$B$2+C9))/$SE$1*EXP(GAMMALN($BS$3)+
a L 3328 GAMMALN($B$4+C9)-GAMMALN ($B$3+$B$4+C9))/$E$S3

7
T X t_x n #donors L(.[X=x,t_x,n) n-t_x-1 0 1 2 3 4 5
| 9| 6 6 6 1203 -2624.6  0.1129 -1 01129 0 0 0 0 0 0
10| 5 6 6 728 —21267  nniac 1 npiae 7 n o 0 0 0
TN 2 6 6 512 =IF(1$8<=$G9,EXP(GAMMALN($B$1+$A9)+GAMMALN($B$2+$B9-$A9-+1$8)- o o o
= GAMMALN($B$1+$B$2+$B9+1$8))/$ES1*EXP(GAMMALN($B$3+1)+GAMMALN($B$4
[12] 3 6 6 357 +$B9+1$8)-GAMMALN ($B$3+$B$4+$B9-+1$8+1))/$E$3,0) 0 0 0
[13] 2 6 6 234 13725 0.0035 T 0.0035 0 0 0 0 0 0
[ 14] 1 6 6 129  -630.0  0.0076 -1 0.0076 0 0 0 0 0 0
[ 15| 5 5 6 335 -12 C15B151 —=0 00136  0.0107 0 0 0 0 0
| 16| 4 5 6 284  -1447.1  0.0061 0 0.0046  0.0015 0 0 0 0 0
[17] 3 5 _D19'LN(F19)) [635  0.0036 0 0.030  0.0006 0 0 0 0 0
18] 2 5 5 U526 0.0041 0 0.0035  0.0005 0 0 0 0 0
[ 19] 1 5 6 119  -567.3  0.0085 0 0 0 0 0
120] 4 4 6 240 -9236  0.0213 ; 0 0.0015 0 0 0 0
| 21] 3 4 6 181 -915.7  0.0063 1 00030 00027  0.0006 0 0 0 0
[22] 2 4 6 155  -805.3  0.0055 1 00035 00015  0.0005 0 0 0 0
23] 1 4 6 78 -356.5  0.0104 1 00076 0.0018  0.0009 0 0 0 0
| 24 3 3 6 322 11358  0.0294 2 00030 00230 00027  0.0006 0 0 0
[ 25 ] 2 3 6 255 -1151.6  0.0109 2 00035 00054 00015  0.0005 0 0 0
126 | 1 3 6 129  -5450  0.0146 2 00076 0.0043 0.0018  0.0009 0 0 0
[ 27] 2 2 6 613 -1846.4  0.0492 3 00035 00383 00054 00015  0.0005 0 0
| 28| 1 2 6 277 -993.9  0.0276 3 00076 00130 0.0043 0.0018  0.0009 0 0
[29] 1 1 6 1091 -2497.1  0.1014 4 00076 00737 00130 00043  0.0018  0.0009 0

30 0 0 6 3464 -40443 03111 5 00362 01909 00459 0.0189  0.0098  0.0058  0.0037
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Parameter Estimates (1995 Cohort)

X

B

LL

BB

0.487 0.826
BG/BB 1.204 0.750 0.657 2.783

-35,516.1
-33,225.6
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Cumulative # Repeat Transactions

Fit of the BG/BB Model
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Tracking Cumulative Repeat Transactions
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# Repeat Transactions

Tracking Annual Repeat Transactions
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Repeat Transactions in 2002 - 2006

# People
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5,000 -
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Key Results

For an individual with observed behavior (x, t,,n):
P(alive in period n + 1| x, ty, n)
The probability he will be “alive” in the next period.
P X(n,n+n*) =x*|x,tx,n)

The probability he will make x* transactions across the next n*
transaction opportunities.

E[X(n,n+n*) | x,ty,n]

The expected number of transactions across the next n*
transaction opportunities.

DERT(d | x,ty,n)

The discounted expected residual transactions.
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ID 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

100002 1 0 0 0 0 0 0 ? ? ? ? ?
100003 1 0 0 0 0 0 0 ? ? ? ? ?

100005 1 0 1 1 1 0 1 ? ? ? ? ?
100006 1 1 1 1 0 1 0 ? ? ? ? ?
100007 1 1 0 1 0 1 0 ? ? ? ? ?
100008 1 1 1 1 1 1 1 ? ? ? ? ?

100010 1 0 0 0 0 0 0 ? ? ? ? ?

111102 1 1 1 1 1 1 1 ? ? ? ? ?

111104 1 0 0 0 0 0 0 ? ? ? ? ?
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Expected # Transactions in 2002 -2006
as a Function of Recency and Frequency

# Rpt Trans. Year of Last Transaction

(1996-2001) 1995 1996 1997 1998 1999 2000 2001
0 0.07
1 0.09 031 059 084 1.02 1.15
2 0.12 054 1.06 1.44 1.67
3 0.22 1.03 1.80 2.19
4 0.58 2.03 271
5 1.81 3.23
6 3.75
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Actual Average # Transactions in 2002 -2006
as a Function of Recency and Frequency

# Rpt Trans. Year of Last Transaction

(1996-2001) 1995 1996 1997 1998 1999 2000 2001
0 0.17
1 0.22 037 060 0.56 1.14 147
2 040 046 074 141 1.89
3 0.46 094 1.66 2.29
4 0.84 191 272
5 1.74  3.06
6 3.53
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Conditional Expectations by Frequency

—=—  Actual
---¢0--- Model

# Repeat Transactions (2002 -2006)
N

# Repeat Transactions (1996 -2001)
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Conditional Expectations by Recency

—>—  Actual
---0--- Model

# Repeat Transactions (2002 - 2006)
N

1995 1996 1997 1998 1999 2000 2001

Year of Last Transaction
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Expected # Transactions in 2002 -2006
as a Function of Recency and Frequency

# Rpt Trans. Year of Last Transaction

(1996-2001) 1995 1996 1997 1998 1999 2000 2001
0 0.07
1 0.09 031 059 084 1.02 1.15
2 0.12 054 1.06 1.44 1.67
3 0.22 1.03 1.80 2.19
4 0.58 2.03 271
5 1.81 3.23
6 3.75
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Expected # Transactions in 2002 - 2006
as a Function of Recency and Frequency

E(# Trans. in 2002-2006)

IS

Frequency (x) 1995

Recency (tx)
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P(alive in 2001) as a
Function of Recency and Frequency

# Rpt Trans. Year of Last Transaction

(1996-2001) 1995 1996 1997 1998 1999 2000 2001
0 0.12
1 0.07 0.27 0.52 0.73 0.89 1.00
2 0.07 032 063 0.86 1.00
3 0.10 047 0.82 1.00
4 0.22 0.75 1.00
5 0.56  1.00
6 1.00
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Posterior Mean of P as a
Function of Recency and Frequency

# Rpt Trans. Year of Last Transaction

(1996-2001) 1995 1996 1997 1998 1999 2000 2001
0 0.49
1 0.66 044 034 030 0.28 0.28
2 0.75 0.54 044 041 0.40
3 0.80 0.61 0.54 0.53
4 0.82 0.68 0.65
5 0.83 0.78
6 0.91
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Moving Beyond a Single Cohort

Cohort Size

1995 11,104
1996 10,057
1997 9,043
1998 8,175
1999 8,977
2000 9,491

- Pooled calibration using the repeat transaction data for
these 56,847 people across 1996 -2001

- Hold-out validation period: 2002 - 2006
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Parameter Estimates (Pooled)

X B y o LL

BB 0.501 0.753 -115,615.0
BG/BB 1.188 0.749 0.626 2.331 -110,521.0
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Fit of the BG/BB Model
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Tracking Cumulative Repeat Transactions
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# Repeat Transactions

Tracking Annual Repeat Transactions
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Computing E(CLV)

E(CLV) = JOmE[v(t)]S(t)d(t)dt.

- Assuming that an individual’s spend per transaction is

constant, v (t) = net cashflow / transaction X t(t)

(where t(t) is the transaction rate at t) and

E(CLV) = E(net cashflow / transaction)

X JwE[t(t)]S(t)d(t)dt.
0
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Computing E(RLV)
- Standing at time T,
E(RLV) = E(net cashflow / transaction)

X JmE[t(t)]S(t [t > T)d(t -T)dt.
LT v

-~

discounted expected residual transactions

- The quantity DERT, discounted expected residual
transactions, is the present value of the expected
future transaction stream for a customer with a given
purchase history.

145

Computing DERT

- For a customer with purchase history (x, ty,n),

DERT (d | p, 0, alive at n)

00

S P(Y; =1|p,alive at t)P(alive att |t > n, 0)
- (1+ad)tn

t=n+1
p(l—0)
d+ 0

- However,
- p and 0 are unobserved

- We do not know whether the customer is alive at n
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Computing DERT

DERT(d | &, B,Y,0,X,tx, )

1 ,1
= J J {DERT(d | p, 0,alive at n)
0 Jo

X P(alive atn | p, 0,x,tx,n)

Xg(pse | O‘!B!Y16!X7t)€’n)}dpd6

_Blax+x+1,p+n—-x)B(y,0+n+1)
B B(«x, B) B(y,o)(1+4d)

Fi(L,s+n+Ly+d+n+1;1)

L(e,B,y,0|x,tx,n)
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DERT as a Function of

Recency and Frequency (d = 0.10)

# Rpt Trans. Year of Last Transaction

(1996-2001) 1995 1996 1997 1998 1999 2000 2001
0 0.11
1 013 049 094 132 1.61 1.81
2 0.19 084 1.67 227 2.63
3 0.35 1.63 2.84 3.45
4 0.92 3.20 4.27
5 2.86  5.09
6 5.91
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Expected # Transactions in 2002 -2006
as a Function of Recency and Frequency

# Rpt Trans. Year of Last Transaction

(1996-2001) 1995 1996 1997 1998 1999 2000 2001
0 0.07
1 0.09 031 059 084 1.02 1.15
2 0.12 054 1.06 1.44 1.67
3 0.22 1.03 1.80 2.19
4 0.58 2.03 271
5 1.81 3.23
6 3.75
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DERT versus Conditional Expectations

- For any given analysis setting, the DERT numbers differ
from the conditional expectations by a constant,

independent of the customer’s exact purchase history.

- In this empirical setting, DERT = 1.575 x CE.

- As aresult, any ranking of customers on the basis of

DERT will be exactly the same as that derived using the
conditional expectation of purchasing over the next n*

periods.
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Further Reading

Fader, Peter S., Bruce G. S. Hardie, and Jen Shang (2010),
“Customer-Base Analysis in a Discrete-Time Noncontractual
Setting,” Marketing Science, 29 (November-December),
1086-1108. <http://brucehardie.com/papers/020/>

Fader, Peter S. and Bruce G.S. Hardie (2011), “Implementing
the BG/BB Model for Customer-Base Analysis in Excel.”
<http://brucehardie.com/notes/010/>
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“Discrete-Time” Transaction Data
A transaction opportunity is

- a well-defined point in time at which a transaction
either occurs or does not occur, or

- a well-defined time interval during which a (single)
transaction either occurs or does not occur.

“necessarily discrete” attendance at sports events
attendance at annual arts festival

“generally discrete” charity donations
blood donations

discretized by cruise ship vacations
recording process
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From Discrete to Continuous Time
- Suppose we have a year of data from Amazon.

- Should we define
- 12 monthly transaction opportunities?
- 52 weekly transaction opportunities?

- 365 daily transaction opportunities?
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From Discrete to Continuous Time

As the number of divisions of a given time period — oo

binomial — Poisson

beta-binomial — NBD

geometric — exponential

beta-geometric — Pareto Type II

BG/BB — Pareto/NBD
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Classifying Customer Bases

Continuous

Opportunities for
Transactions

Discrete

Grocery purchasing
Doctor visits

Hotel stays

Credit cards
Utilities

Continuity programs

Conf. attendance
Prescription refills

Charity fund drives

Magazine subs
Insurance policies

“Friends” schemes

Noncontractual

Contractual

Type of Relationship With Customers
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Setting
New customers at CDNOW, 1/97-3/97

Systematic sample (1/10) drawn from panel of 23,570
new customers

39-week calibration period
39-week forecasting (holdout) period

Initial focus on transactions
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Purchase Histories
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Cumulative Repeat Transactions
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Modelling Objective

Given this customer database, we wish to determine the
level of transactions that should be expected in next period

(e.g., 39 weeks) by those on the customer list, both
individually and collectively.

159

Modelling the Transaction Stream

A customer’s relationship with a firm has two phases: they
are “alive” for an unobserved period of time, then “dead.”

Transaction Process:

- While alive, a customer purchases “randomly” around his
mean transaction rate.

- Transaction rates vary across customers.

Latent Attrition Process:

- Each customer has an unobserved “lifetime,” which is a
function of their death rate.

- Death rates vary across customers.
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The Pareto/NBD Model
(Schmittlein, Morrison and Colombo 1987)

Transaction Process:

- While alive, the number of transactions made by a customer
follows a Poisson process with mean transaction rate A.

- Heterogeneity in transaction rates across customers is
distributed gamma(r, ).

Latent Attrition Process:

- Each customer has an unobserved “lifetime” of length w,
which is distributed exponential with death rate pu.

- Heterogeneity in death rates across customers is distributed
gamma(s, ).
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Summarizing Purchase Histories

- Given the model assumptions, we do not require
information on when each of the x transactions
occurred.

- The only customer-level information required by this
model is recency and frequency.

- The notation used to represent this information is
(x, ty, T), where x is the number of transactions
observed in the time interval (0, T] and t, (0 < t, < T)
is the time of the last transaction.
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Purchase Histories

ID = 0001 & -
ID = 0002 & -
ID=1178 | o 2
ID=1179 | o .
ID = 2356 | —
ID = 2357 | R

Week 0 Week 39
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A | B | C [ D
1 ID X t_x T
2 0001 2 30.43 38.86
3 0002 1 1.71 38.86
4 0003 0 0.00 38.86
5 0004 0 0.00 38.86
6 0005 0 0.00 38.86
7 0006 7 29.43 38.86
8 0007 1 5.00 38.86
9 0008 0 0.00 38.86
10 0009 2 35.71 38.86
11 0010 0 0.00 38.86
12 0011 5 24.43 38.86
13 0012 0 0.00 38.86
14 0013 0 0.00 38.86
15 0014 0 0.00 38.86
16 0015 0 0.00 38.86
17 0016 0 0.00 38.86
18 0017 10 34.14 38.86
19 0018 1 4.86 38.86
20 0019 3 28.29 38.71
1178 1177, 0 000  32.71
1179 1178 1 8.86 32.71
1180 1179 0 0.00 32.71
1181 1180 0 0.00 32.71
2356] 2355 0 0.0  27.00
2357 2356 4 26.57 27.00
2358 2357 0 0.00 27.00
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Pareto/NBD Likelihood Function

Lr,o,s,B1x,tx,T)
T(r +x)o’ B° s 2F1(r+s+x,5+1;r+5+x+1;of‘;ti)
B T(r) { (,,+5 +x> (X + by )T T5+X
4+ x 2Fi(r +s+x,5;r+s+x+1;
( ) (X + T)r+s+x

fX_—B)
of T },if(xzﬁ

Yy +S+X

L(Tl 0(15’3 | X,tx,T)

:F(1f+x)o<rﬁ’s{< s >2F1(r+s+x,r+x;r+s+x+l;gjt‘z‘c)
L(r) r+S+x (B + tx)rts+x

( Y+ x )2F1(r+s+x,r+x+1;r+s+x+1;5;;—%

(B + T)T+S+X

)},ifasﬁ

Y¥+5+X
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Key Results
E[X(t)]

The expected number of transactions in the time
interval (O, t].

P(alive | x, ty, T)

The probability that an individual with observed
behavior (x, ty, T) is still alive at time T.

E[X(T, T +1t)|x,ty, T]

The expected number of transactions in the future
period (T, T + t] for an individual with observed
behavior (x, t,,T).
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Cumulative # Repeat Transactions

Frequency of Repeat Transactions
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Tracking Cumulative Repeat Transactions
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# Repeat Transactions

Tracking Weekly Repeat Transactions
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Expected # Transactions in Weeks 40-78

Conditional Expectations

— Actual
—*— Pareto/NBD

# Transactions in Weeks 1-39
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Computing DERT

- For Poisson purchasing and exponential lifetimes with
continuous compounding at rate of interest 9,

o0 _“t
DERT(S | A, u,alive at T) = J 2\( € )e‘5(t‘T)dt
T \e HT

o0
= J Ae HSe=05ds
0

A
U+ 0

- However,
- A and p are unobserved

- We do not know whether the customer is alive at T
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Computing DERT

DERT (0 |7, s,B,x,tx, T)

- J J {DERT (5 | A, p, alive at T)
0 0
X P(aliveat T | A, u,x,ty, T)

XgA,ulr,os, B, x,ty, T)}d?\du

"B (r + x +1)¥(s,s;0(B+T))
IF(r)(x+ T)"**+1L(r, 0,8, B1x,tx, T)

where Y (-) is the confluent hypergeometric function of the
second kind.
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Continuous Compounding

- An annual discount rate of (100 x d)% is equivalent to
a continuously compounded rate of 6 =1In(1 + d).

- If the data are recorded in time units such that there

are k periods per year (k = 52 if the data are recorded
in weekly units of time) then the relevant continuously
compounded rate is 6 = In(1 + d) / k.
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DERT by Recency and Frequency
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Iso-Value Representation of DERT
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“Increasing Frequency” Paradox

Cust. A ¢

>
I

Py

Cust. B <>
Week 0

I

Week 78

DERT
Cust. A 4.6
Cust. B 1.9
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Key Contribution

- We are able to generate forward-looking estimates of
DERT as a function of recency and frequency in a
noncontractual setting:

DERT = f(R,F)

- Adding a sub-model for spend per transaction enables
us to generate forward-looking estimates of an
individual’s expected residual revenue stream
conditional on his observed behavior (RFM):

E(RLV) = f(R,F,M) = DERT X g(F,M)
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Modelling the Spend Process

- The dollar value of a customer’s given transaction
varies randomly around his average transaction value

- Average transaction values vary across customers but
do not vary over time for any given individual

- The distribution of average transaction values across
customers is independent of the transaction process.

178



Independence of the Spend Process
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Modelling the Spend Process

- For a customer with x transactions, let zq, zo,..., Zy
denote the dollar value of each transaction.

- The customer’s observed average transaction value
X

Z = Z Zi/X
i=1

is an imperfect estimate of his (unobserved) mean
transaction value C.
- Our goal is to make inferences about C given Z, which

we denote as E(Z | Z, x).

180



Summary of Average Transaction Value

946 individuals (from the 1/10th sample of the cohort)
make at least one repeat purchase in weeks 1-39

$
Minimum 2.99
25th percentile 15.75
Median 27.50
75th percentile 41.80
Maximum 299.63
Mean 35.08
Std. deviation 30.28
Mode 14.96
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Modelling the Spend Process
Given the assumptions

i) The dollar value of a customer’s given transaction is
distributed gamma with shape parameter p and scale
parameter v (which implies € = p/v)

ii) Heterogeneity in v across customers follows a gamma
distribution with shape parameter g and scale
parameter y

it follows that the marginal distribution of Z is

_ [(px +q) yizr>1xp~
~ T(px)T(q) (y + zx)px+a’

f(Zlp,a,y;x)
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Distribution of Average Transaction Value
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Computing Expected Residual Lifetime Value

We are interested in computing the present value of an
individual’s expected residual margin stream conditional
on his observed behavior (RFM)

E(RLV) = margin X revenue/transaction X DERT
= margin X E(Z|p,q,y,Z,x)
X DERT (6 |7, o, S, B,x,tx, T)
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Estimates of E(RLV)

Frequency (x)

o =
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Frequency (x)
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Closing the Loop

Combine the model-driven RFM-CLYV relationship with the
actual RFM patterns seen in our dataset to get a sense of
the overall value of this cohort of customers:

- Compute each customer’s expected residual lifetime
value (conditional on their past behavior).

- Segment the customer base on the basis of RFM terciles
(excluding non-repeaters).

- Compute average E(RLV) and total residual value for
each segment.
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Distribution of Repeat Customers

Number of Customers

Frequency (x)

(12,054 customers make no repeat purchases)
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Average E(RLV) by RFM Segment

Recency
Frequency 0 1 2 3
M=0 0 $4.40
M=1 1 $6.39 $20.52 $25.26
2 $7.30 $31.27 $41.55
3 $4.54 $48.74  $109.32
M=2 1 $9.02 $28.90 $34.43
2 $9.92 $48.67 $62.21
3 $5.23 §77.85 $208.85
M=3 1 $16.65 $53.20 $65.58
2 $22.15 $91.09 $120.97
3 $10.28 $140.26 $434.95
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Total Residual Value by RFM Segment

Recency
Frequency 0 1 2 3
M=0 0 $53,000
M=1 1 $7,700 $9,900 $1,800
2 $2,800 $15,300 $17,400
3 $300 $12,500 $52,900
M=2 1 $5,900 $7,600 $2,300
2 $3,600  $26,500 $25,800
3 $500 $37,200 $203,000
M=3 1 $11,300 $19,700 $3,700
2 $7,300  $45,900 $47,900
3 $1,000 $62,700 $414,900
189

An Alternative to the Pareto/NBD Model

- Estimation of model parameters can be a barrier to

Pareto/NBD model implementation

- Recall the latent attrition story:

- Each customer has an unobserved “lifetime”

- Death rates vary across customers

- Let us consider an alternative story:

- After any transaction, a customer tosses a coin

heads — remain alive
tails — dies

- P(tails) varies across customers
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The BG/NBD Model
(Fader, Hardie and Lee 2005c¢)

Transaction Process:

- While alive, the number of transactions made by a customer
follows a Poisson process with mean transaction rate A.

- Heterogeneity in transaction rates across customers is
distributed gammal(r, ).

Latent Attrition Process:
- After any transaction, a customer dies with probability p.

- Heterogeneity in death probabilities across customers is
distributed beta(a, b).
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BG/NBD Likelihood Function

We can express the model likelihood function as:

Lir,x,a,b|x,ty, T) = A1 - Az - (A3 + Ox>0As)

where A T(r+x)o”
T
I'(a+Db)I'(b+ x)
A

T T(WT(a+Db+x)

As = <O(iT>r+x

a 1 r+x
As = <b+x—1)<o<+tx>
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A B [ c | b | E | F | 6 | H | I

1 |r 0.243

2 |alpha 4.414 |=GAMMALN(B$1+B8)- =IF(B8>0,LN(B$3)-LN(B$4+B8-

3 |a 0793 |GAMMALN(BS1)}+B$1*LN(B$2) 1)-(B$1+B8)*LN(B$2+C8),0)

4 |b 2.426 , ,

5 |LL -9582.4 \ | =-(B$1+B8)*LN(B$2+D8) |

6

7 ID X t x T In() In(A_1) In(A_2) yIn(A_3) In(A_4)
8 0001 2 30.43 38.86] -94596 -0.8390 -0.4910 -8.4489 -9.4265
9 0002 1 1.71 -4.4711 -0.2828 -46814 -3.3709
10 | =SUM(E8:E2364) | 0.00 : -0.5538 0.0000 -0.9140  0.0000
11 0004 0 0.00 38.86 -0.5538 0.0000 -0.9140  0.0000
12 Annc 2 oo ao-na

T3] |SF8+GB+LN(EXP(HB)*(BB>0VEXP(8)) | | _GAMMALN(BS3+BS4)+GAMMALN(BS4+B8)-

14 0007 1 5.00 38.86 GAMMALN(B$4)-GAMMALN(B$3+B$4+B8)

15 0008 0 0.00 38.86 U ; ; U 000
16 0009 2 35.71 38.86 -9.5367 -0.8390 -0.4910 -8.4489 -0.7432
7] 0010 _ 0 ___000 _ 3886 -0.5538 03602 00000 -0.9140 _ 0.0000
2362 2355 0 0.00 27.00 -0.4761 0.3602  0.0000] -0.8363  0.0000
2363 2356 4 26.57 27.00 -14.1284 11450 -0.7922  -14.6252  -16.4902
2364 2357 0 0.00 27.00 -0.4761 0.3602 0.0000 -0.8363  0.0000
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Model Estimation Results

BG/NBD Pareto/NBD

v 0.243 0.553

X 4.414 10.578

a 0.793

b 2.426

S 0.606
11.669

LL -9582.4 -9595.0
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Frequency of Repeat Transactions
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Tracking Cumulative Repeat Transactions
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Tracking Weekly Repeat Transactions
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Computing DERT for the BG/NBD

- It is very difficult to solve
DERT — J E[t(t)IS(E |t > T)d(t - T)dt
T

when the flow of transactions is characterized by the
BG/NBD.

- It is easier to compute DERT in the following manner:

00

DERT = > (ﬁ)i_o's{E[X(T, T +1i)|x, ty,T]

— E[X(T,T+i-1)|x,tT]}
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Beyond the Basic Models
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Implementation Issues

- Handling multiple cohorts
- treatment of acquisition

- consideration of cross-cohort dynamics

- Implication of data recording processes
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Implications of Data Recording Processes
(Contractual Settings)

Cohort Calendar Time —
1 Ny N2 N3 ... Ngg
2 No> MN23 ... MN2p
3 ns3 nsy
I nir
ni no Nnia e N
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Implications of Data Recording Processes
(Contractual Settings)

Cohort Calendar Time — Cohort Calendar Time —
I nyp nig T nn
2 npp nyg 2 npo
-1 np_1,1-1 M-1,1 -1 ny_1,1-1
I nir I nir
nip npz ... nj nr
Cohort Calendar Time — Cohort Calendar Time —
1 niy 1 ni-1 N
2 nyr 2 npr-1 M2
-1 np_1,1 -1 np-1,1-1 "r-1,1
1 nyr 1 nrr
ni np L L |
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Implications of Data Recording Processes
(Noncontractual Settings)

D=1 i i i
D=2 : .
D=3 .
ID=n | -

206



Implications of Data Recording Processes

(Noncontractual Settings)
Period Period 1 Period 2

ID 1 2 3 4
1 2 0 3 1
2 0 1 0 1 1 1
3 0 1 0O O
-01234567+-01234567+
n 1 0 0 2 Period 3 Period 4

01 2 3 4 5 6 7+ 01 2 3 4 5 6 7+
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Implications of Data Recording Processes
(Noncontractual Settings)

Match the model likelihood function to the data structure:

- Interval-censored individual-level data

Fader, Peter S. and Bruce G.S. Hardie (2010), “Implementing the
Pareto/NBD Model Given Interval-Censored Data .”
<http://brucehardie.com/notes/011/>

- Period-by-period histograms (RCSS)

Fader, Peter S., Bruce G.S. Hardie, and Kinshuk Jerath (2007), “Estimating
CLV Using Aggregated Data: The Tuscan Lifestyles Case Revisited .”
Journal of Interactive Marketing, 21 (Summer), 55-71.

Jerath, Kinshuk, Peter S. Fader, and Bruce G.S. Hardie (2013),
“Customer-Base Analysis on a ‘Data Diet’: Model Inference Using
Repeated Cross-Sectional Summary (RCSS) Data.”
<http://brucehardie.com/papers/025/>
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Model Extensions

- Duration dependence
— individual customer lifetimes

- interpurchase times

- Nonstationarity

- Correlation

- Covariates

209

Individual-Level Duration Dependence

- The exponential distribution is often characterized as
being “memoryless”.

- This means the probability that the event of interest
occurs in the interval (t,t + At] given that it has not
occurred by t is independent of t:

Pt<T<t+At)|T>t)=1-e 0,

- This is equivalent to a constant hazard function.
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The Weibull Distribution

- A generalization of the exponential distribution that
can have an increasing and decreasing hazard function:

F(t)=1—-e M A,c>0
h(t) = cAtc!

where c is the “shape” parameter and A is the “scale”
parameter.

- Collapses to the exponential when ¢ = 1.

- F(t) is S-shaped for ¢ > 1.
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The Weibull Hazard Function

h(t)

h(t) = cAtc!

- Decreasing hazard function (negative duration dependence) when
c < 1.

- Increasing hazard function (positive duration dependence) when
c > 1.
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Individual-Level Duration Dependence

- Assuming Weibull-distributed individual lifetimes and
gamma heterogeneity in A gives us the (generalized)
Burr Type XII distribution, with survivor function

seinae= (o)

- DERL for a customer with tenure s is computed by

® X+ s Te_é(t_s)dt
s \oX+t€

using standard numerical integration techniques.

solving
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Individual-Level Duration Dependence

- In a discrete-time setting, we have the discrete Weibull
distribution:
S(t]10,c)=(1-0).

- Assuming heterogeneity in 0 follows a beta
distribution with parameters («, ), we arrive at the
beta-discrete-Weibull (BdW) distribution with survivor
function:

1
S(tlo,B,c) = Jo S(t|0,c)g(0|x,B)do

_ B(x,B +t°)
~ B(«,B)

214



Nonstationarity
“Buy then die” < latent characteristics governing
purchasing are constant then become 0.

Perhaps more realistic to assume that these latent
characteristics can change over time.

Nonstationarity can be handled using a hidden Markov

model

Netzer, Oded, James Lattin, and V. Srinivasan (2008), “A Hidden Markov
Model of Customer Relationship Dynamics,” Marketing Science, 27
(March-April), 185-204.

or a (dynamic) changepoint model

Fader, Peter S., Bruce G.S. Hardie, and Chun-Yao Huang (2004), “A
Dynamic Changepoint Model for New Product Sales Forecasting,”
Marketing Science, 23 (Winter), 50-65.
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Correlation

We typically assume independence of the latent traits:

- Correlation can sometimes be accommodated using Sarmanov
distributions:

Park, Young-Hoon and Peter S. Fader (2004), “Modeling Browsing Behavior
at Multiple Websites,” Marketing Science, 23 (Summer), 280-303.

Danaher, Peter J. and Bruce G.S. Hardie (2005), “Bacon With Your Eggs?
Applications of a New Bivariate Beta-Binomial Distribution,” The American
Statistician, 59 (November), 282-286.

- Transformations of multivariate normals are more flexible ... but
there are no closed-form solutions.

Fader, Peter S. and Bruce G.S. Hardie (2011), “Implementing the Sgz-G/B
Model in MATLAB.” <http://brucehardie.com/notes/023/>
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Covariates

- Types of covariates:

customer characteristics (e.g., demographics, attitudes)

marketing activities

competition

“macro” factors

- Handling covariate effects:

- explicit integration (via latent characteristics)

- create segments and apply no-covariate models

- Need to be wary of endogeneity bias and sample
selection effects
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The Cost of Model Extensions

- No closed-form likelihood functions; need to resort to
simulation methods.

- Need full datasets; summaries (e.g., RFM) no longer
sufficient.
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Philosophy of Model Building

Problem: Managers are not using the “state-of-the-art”
models developed by researchers.

Solution: Adopt an evolutionary approach to model

building.

- Maximize likelihood of acceptance by starting with a
(relatively) simple model that the manager can
understand AND that can be implemented at low cost.

- Model deficiencies can be addressed, and more
complex (and costly) models can be developed/
implemented, if benefits > cost.
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Philosophy of Model Building

We are specifically interested in kick-starting the
evolutionary process:

- Minimize cost of implementation
- use of readily available software (e.g., Excel)

- use of data summaries

- Purposively ignore the effects of covariates and other
“complexities” at the outset.

Make everything as simple as possible, but not simpler.

Albert Einstein
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Central Tenet

Traditional approach
future = f(past)

Past Future

latent
characteristics

(0)

Probability modelling approach
0= f(past) — future = f(é)
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Classifying Customer Bases

Grocery purchasing Credit cards

Continuous Doctor visits Utilities

Hotel stays Continuity programs

Opportunities for
Transactions

Conf. attendance Magazine subs

Discrete

Prescription refills

Charity fund drives

Insurance policies

“Friends” schemes

Noncontractual
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Contractual

Type of Relationship With Customers




