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Problem 1:
Projecting Customer Retention Rates

(Modelling Discrete-Time Duration Data)



Background

One of the most important problems facing marketing
managers today is the issue of customer retention. It is
vitally important for firms to be able to anticipate the
number of customers who will remain active for 1, 2,...,T
periods (e.g., years or months) after they are first acquired
by the firm.

The following dataset is taken from a popular book on
data mining (Berry and Linoff, Data Mining Techniques,
Wiley 2004). It documents the “survival” pattern over a
seven-year period for a sample of customers who were all
“acquired” in the same period.

# Customers Surviving At Least 0-7 Years

Year # Customers % Alive

0 1000 100.0%
1 869 86.9%
2 743 74.3%
3 653 65.3%
4 593 59.3%
5 551 55.1%
6 517 51.7%
7 491 49.1%

Of the 1000 initial customers, 869 renew their contracts at the
end of the first year. At the end of the second year, 743 of these
869 customers renew their contracts.
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% Survived

Modelling Objective

Develop a model that enables us to project the
survival curve (and therefore retention rates) over
the next five years (i.e., outto T = 12).
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Natural Starting Point
Project survival using simple functions of time:
- Consider linear, quadratic, and exponential functions

- Let v = the proportion of customers surviving at least t

years
y =0.925 - 0.071¢t R? =0.922
y =0.997 — 0.142t + 0.010¢*> R? = 0.998
In(y) = —0.062 — 0.102¢t R? = 0.964
7
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Survival Curve Projections
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Developing a Better Model (I)
Consider the following story of customer behavior:

i. At the end of each period, an individual renews his
contract with (constant and unobserved) probability
1-0.

ii. All customers have the same “churn probability” 6.
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Developing a Better Model (I)
More formally:

- Let the random variable T denote the duration of the
customer’s relationship with the firm.

- We assume that the random variable T has a (shifted)
geometric distribution with parameter 0:

P(T=t|0)=0(1-0)"', t=1,2,3,...
P(T>t|0)=1-60)" t=1,2,3,...
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Developing a Better Model (I)

The probability of the observed pattern of contract
renewals is:

[9]131[0(1 _ 9)1]126[0(1 _ 0)2]90
X [6(1-0)°1°Te(1 — 6)*1*[6(1 — 0)°1**
X [6(1-0)°1°°[(1 —0)"1*!
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In [P (data) |

Estimating Model Parameters

- Let us assume that the observed data are the outcome
of a process characterized the “coin-flipping” model of
contract renewal.

- Which value of 0 is more likely to have “generated” the
data?

0 P(data) In [P (data) ]
0.2 1.49 x 10784 —1804.8
0.5 1.34 x 1071483 —3414.4
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Estimating Model Parameters

-1500
—2000
-2500

-3000

-3500 T T T T ]
0.0 0.1 0.2 0.3 0.4 0.5

14



Estimating Model Parameters
We estimate the model parameters using the method of
maximum likelihood:

- The likelihood function is defined as the probability of observing
the sample data for a given set of the (unknown) model
parameters

- This probability is computed using the model and is viewed as a
function of the model parameters:

L(parameters|data) = p(data|parameters)

- For a given dataset, the maximum likelihood estimates of the
model parameters are those values that maximize L(-)
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Estimating Model Parameters

The log-likelihood function is defined as:

LL(O|data) = 131 xIn[P(T =1)] +
126 X In[P(T = 2)] +
n
26 XIn[P(T =7)] +
491 X In[P(T > 7)]

The maximum value of the log-likelihood function is
LL = —1637.09, which occurs at 6 = 0.103.
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Estimating Model Parameters

A B C D | E

1 [theta 0.5000 )
2 |LL -3414.44 <{=SUMEEETY)
3 =D6*LN(B6)
4 Year P(T=t) # Cust. # Lost
5 0 1000
6 1 0.5000 869 131 -90.80
7 2 0.2500 743 126 -174.67
8 3 0.1250 <]{=$B$1*(1-$B$1)"(A8-1)}7.15]
9 4  0.0625 593 60  -166.36
10 5  0.0313 551 42 -145.56
11 6 0.0156 517 34  -141.40
12 7 0.0078 491 26 -126.15
12 ~C12*LN(1-SUM(B6:B12))|—= | -2382.3469

\ \ \
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Estimating Model Parameters

Solver Parameters g]
Set Target Cell: T
Equal Ta: @ Max  OMn  Ovalueof: |0 -

= = = Close
By Changing Cells: -
o1
Subject to the Constrainks:
s <—050 e ]
$B$1 »= 0,0001
Reset Al
]

Help

18




% Survived

Survival Curve Projection
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What’s wrong with this story of customer

contract-renewal behavior?
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Developing a Better Model (II)
Consider the following story of customer behavior:

i. At the end of each period, an individual renews his

contract with (constant and unobserved) probability
1-6.

ii. “Churn probabilities” vary across customers.
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Accounting for Heterogeneity (I)

- We don’t know each customer’s true value of 0.
— we need to take a weighted average over all
possible values that 0 can take on.

- If there were only two segments of customers,

P(T =t) =P(T =t|segment 1)P(segment 1)
+ P(T =t | segment 2)P (segment 2)
= 0;(1 - Ql)t_l‘lT + 05(1 — Qz)t_l(l —17)

- Likewise for three or four segments ...

22



Vodafone Italia
Churn Clusters

100 -
Cluster P(churn) %CB
Low risk 0.06 70 50 A
Medium risk 0.35 20
High risk 0.65 10
0 T T T I T

0.0 02 04 06 0.8

P(churn)

Source: “Vodafone Achievement and Challenges in Italy” presentation (2003-09-12)

23

Accounting for Heterogeneity (II)

- We move from a finite number of segments to an
infinite number of segments.

- Assume heterogeneity in 0 is captured by a beta
distribution with pdf

90(—1 (1 _ 9)3—1

g0, B) = B B)
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The Beta Function

- The beta function B(a, b) is defined by the integral

1
B(a,b) = J t* 11 -t)'dt,a>0,b>0,
0

and can be expressed in terms of gamma functions:

I'(a)T(b)

Bla,b) = 075y

- The gamma function I'(a) is defined by the integral

(]

[(a) = J t e tdt, a> 0,
0

and has the recursive propertyI'(a + 1) = al'(a).
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The Beta Distribution

0% 1(1-0)1

g0« p) = ,0<0<1.

B(«x, B)

- The mean of the beta distribution is

X

+ B

E(®) =
X

- The beta distribution is a flexible distribution ...

mathematically convenient
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General Shapes of the Beta Distribution
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Developing a Better Model (IIc)

For a randomly chosen individual,

1
P(T =t | B) =j0P<T= £16)9(6 |, B)do

_Bla+1,B+t-1)
- B(«x, B)

1
P(T>t|0(,B)=JOP(T>t|0)g(0|o<,B)d0

_ B(a,B+1)
~ B(x,p)

We call this “continuous mixture” model the shifted-

beta-geometric (sBG) distribution
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Computing sBG Probabilities

We can compute sBG probabilities by using the following
forward-recursion formula from P(T = 1):

x
t=1
x+f
P(T=t) =1
B+t-2
P(T=t-1 =2,3,...
 x+B+t—-1 ( t )
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Estimating Model Parameters

The log-likelihood function is defined as:

LL(x, Bldata) = 131 XIn[P(T =1)] +
126 X In[P(T =2)] +
n
26 X In[P(T =7)] +
491 X In[P(T > 7)]

The maximum value of the log-likelihood function is
LL = —1611.16, which occurs at & = 0.668 and § = 3.806.

30



Estimating Model Parameters

A B C D | E
1 |alpha 1.000
2 |beta 1.000
3 |LL -2115.55
4 !
5 Year P(T=t) # Cust. # Lost
6 0 1000 ,
7 1 0.5000 <-=B1/(B1+B2)|31  -90.8023
8 ,??7 0.1667 743 126 -225.7617
o] (<7 (6852+A8 2) ($B51+8852:A81)] g5y 7430
11 5 0.0333 551 42| -142.8503
12 6 0.0238 517 34 -127.0808
13 7 0.0179 491 26 -104.6591
14 -1021.0058
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Estimating Model Parameters

Solver Parameters g|
Set Target Cell: T
Equal Ta: ®iMax  (OMn (O valusof: |0 -

= = = Close
By Changing Cells: -
oz
Subject to the Constrainks:
$B41:4642 == 0.00001
Reset Al
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Estimated Distribution of Churn Probabilities
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Survival Curve Projection
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% Survived

A Further Test of the sBG Model

- The dataset we have been analyzing is for a “high end”

segment of customers.

- We also have a dataset for a “regular” customer

segment.

- Fitting the sBG model to the data on contract renewals

for this segment yields & = 0.704 and B=1.182
(= E(©) = 0.373).
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Survival Curve Projections
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Estimated Distributions of Churn Probabilities

—  High End

—————— Regular

fe 24 5
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Implied Retention Rates

- The retention rate for period t (7;) is defined as the
proportion of customers who had renewed their

contract at the end of period t — 1 who then renew
their contract at the end of period t.

- For any model of contract duration with survivor
function P(T > t),

P(T >t)

P Tt
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Implied Retention Rates

- For the sBG model,

B+t—1
x+p+t—-1

T

- An increasing function of time, even though the

individual-level retention probability is constant.

- A sorting effect in a heterogeneous population.

39

Projecting Retention Rates
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Concepts and Tools Introduced
- Probability models
- Maximum-likelihood estimation of model parameters
- Modelling discrete-time (single-event) duration data

- Models of contract renewal behavior
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Further Reading

Fader, Peter S. and Bruce G.S. Hardie (2007), “How to Project
Customer Retention,” Journal of Interactive Marketing, 21 (Winter),
76-90.

Fader, Peter S. and Bruce G.S. Hardie (2007), “How Not to Project
Customer Retention.” <http://brucehardie.com/notes/016/>

Lee, Ka Lok, Peter S. Fader, and Bruce G.S. Hardie (2007), “How to
Project Patient Persistency,” FORESIGHT, Issue 8, Fall, 31-35.

Buchanan, Bruce and Donald G. Morrison (1988), “A Stochastic Model
of List Falloff with Implications for Repeat Mailings,” Journal of
Direct Marketing, 2 (Summer), 7-15.

Weinberg, Clarice Ring and Beth C. Gladen (1986), “The
Beta-Geometric Distribution Applied to Comparative Fecundability
Studies,” Biometrics, 42 (September), 547-560.
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Introduction to Probability Models

43

The Logic of Probability Models

- Many researchers attempt to describe/predict behavior
using observed variables.

- However, they still use random components in
recognition that not all factors are included in the
model.

- We treat behavior as if it were “random” (probabilistic,
stochastic).

- We propose a model of individual-level behavior which
is “summed” across individuals (taking individual
differences into account) to obtain a model of
aggregate behavior.
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Uses of Probability Models
- Understanding market-level behavior patterns

- Prediction

- To settings (e.g., time periods) beyond the
observation period

- Conditional on past behavior
- Profiling behavioral propensities of individuals

- Benchmarks/norms

45

Building a Probability Model

(i) Determine the marketing decision problem/
information needed.

(i) Identify the observable individual-level behavior of
interest.
- We denote this by x.

(iii) Select a probability distribution that characterizes
this individual-level behavior.
- This is denoted by f(x|0).

- We view the parameters of this distribution as
individual-level latent characteristics.
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Building a Probability Model

(iv) Specify a distribution to characterize the
distribution of the latent characteristic variable(s)
across the population.

- We denote this by g(0).
- This is often called the mixing distribution.

(v) Derive the corresponding aggregate or observed
distribution for the behavior of interest:

Flx) = Jf<x|0>g<0> 40

47

Building a Probability Model

(vi) Estimate the parameters (of the mixing
distribution) by fitting the aggregate distribution
to the observed data.

(vii) Use the model to solve the marketing decision
problem/provide the required information.
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Problem 1:

Problem 2:

Problem 3:

Problem 4:

Outline

Projecting Customer Retention Rates
(Modelling Discrete-Time Duration Data)

Predicting New Product Trial
(Modelling Continuous-Time Duration Data)

Estimating Concentration in Champagne
Purchasing
(Modelling Count Data)

Test/Roll Decisions in Segmentation-based
Direct Marketing
(Modelling “Choice” Data)
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Problem 2:

Predicting New Product Trial

(Modelling Continuous-Time Duration Data)

50



Background

Ace Snackfoods, Inc. has developed a new shelf-stable juice
product called Kiwi Bubbles. Before deciding whether or not to “go
national” with the new product, the marketing manager for Kiwi
Bubbles has decided to commission a year-long test market using
IRI’s BehaviorScan service, with a view to getting a clearer picture of
the product’s potential.

The product has now been under test for 24 weeks. On hand is a
dataset documenting the number of households that have made a
trial purchase by the end of each week. (The total size of the panel is
1499 households.)

The marketing manager for Kiwi Bubbles would like a forecast of
the product’s year-end performance in the test market. First, she
wants a forecast of the number of households that will have made a
trial purchase by week 52.

51

Kiwi Bubbles Cumulative Trial

Week # Households Week # Households

1 8 13 68
2 14 14 72
3 16 15 75
4 32 16 81
5 40 17 90
6 47 18 94
7 50 19 96
8 52 20 96
9 57 21 96
10 60 22 97
11 65 23 97
12 67 24 101
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Cum. % Households Trying

Kiwi Bubbles Cumulative Trial

0 4 8 12 16 20 24 28 32 36 40 44 48 52

Week
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Developing a Model of Trial Purchasing

- Start at the individual-level then aggregate.

Q: What is the individual-level behavior of
interest?

A: Time (since new product launch) of trial
purchase.

- We don’t know exactly what is driving the behavior =

treat it as a random variable.
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The Individual-Level Model

- Let T denote the random variable of interest, and t
denote a particular realization.

- Assume time-to-trial is characterized by the
exponential distribution with parameter A (which
represents an individual’s trial rate).

- The probability that an individual has tried by time t is
given by:

F(t|A) =P(T<t|A)=1-e,

55

Distribution of Trial Rates

- Assume trial rates are distributed across the
population according to a gamma distribution:
o(rAr—l e—(x)\
Alr,o) = —
g(Al| ) Tr)

where v is the “shape” parameter and « is the “scale”
parameter.

- The gamma distribution is a flexible (unimodal)
distribution ...and is mathematically convenient.
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Illustrative Gamma Density Functions
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Market-Level Model

The cumulative distribution of time-to-trial at the
market-level is given by:

P(T=<t|r,x) = JOOP(T <tlA)gA|r,x) dA
0

|
- ()
x+t

We call this the “exponential-gamma” model.
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Estimating Model Parameters

The log-likelihood function is defined as:

LL(r,x|data) =8 xIn[P(0O< T <1)]
6xIn[P(1<T<?2)]

+
+
+

4xIn[P(23<T <24)]+
(1499 — 101) X In[P(T > 24)]

The maximum value of the log-likelihood function is
LL = —681.4, which occurs at 7 = 0.050 and & = 7.973.
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Estimating Model Parameters

Al B | ¢ | D E F

1 [Product: Kiwi Bubbles r 1.000
2 |Panelists: 1499 alpha 1.000
3 =SUM(F6:F30)|= LL 4909.5
4 Cum_Trl

5 |Week # HHs Incr_Trl| P(T <=1) P(try weekt)

6 |=1-(F$2/(F$2+A6))"F$1 |—? 0.50000 0.50000 5.545
7 Z T4 6 0.66667 _ 0.16667 10.751
8 3 16 2 OEB‘;‘_‘SG—/ 0.08333 4.970
9 4 32 16 Oowwwo— _ 0.05000 / -47.932
10 5 40 8 0.83333||=C8*LN(ES) 27.210
11 6 47 7 0.85714 0.02381 26.164
12 7 50 3 0.87500 0.01786 12.076
13 8 52 2 0.88889 0.01389 8.553
14 9 57 5/ 0.90000 0.01111 22.499
15 10 60 3 0.90909 0.00909 14.101
29~ ~ “24  ~ T101 4 —ooenonT T AAr 167 -25.588
30 =(B2-B29)"LN(1-D29) | = 4499 988
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Estimated Distribution of A
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Forecasting Trial

- F(t) represents the probability that a randomly chosen
household has made a trial purchase by time ¢, where
t = 0 corresponds to the launch of the new product.

- Let T(t) = cumulative # households that have made a
trial purchase by time t:

E[T(t)] = N x E(t)

:N{l - (&it)”} '

where N is the panel size.

- Use projection factors for market-level estimates.
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Cum. # Households Trying

Cumulative Trial Forecast
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Further Model Extensions
- Add a “never triers” parameter.
- Incorporate the effects of marketing covariates.

- Model repeat sales using a “depth of repeat”
formulation, where transitions from one repeat class to
the next are modeled using an “exponential-
gamma”-type model.
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Concepts and Tools Introduced
- Modelling continuous-time (single-event) duration data

- Models of new product trial
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Further Reading

Fader, Peter S., Bruce G.S. Hardie, and Robert Zeithammer (2003),
“Forecasting New Product Trial in a Controlled Test Market
Environment,” Journal of Forecasting, 22 (August), 391-410.

Hardie, Bruce G.S., Peter S. Fader, and Michael Wisniewski (1998), “An
Empirical Comparison of New Product Trial Forecasting Models,”
Journal of Forecasting, 17 (June-July), 209-229.

Kalbfleisch, John D. and Ross L. Prentice (2002), The Statistical
Analysis of Failure Time Data, 2nd edn., New York: Wiley.

Lawless, J.F. (1982), Statistical Models and Methods for Lifetime Data,
New York: Wiley.
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Problem 3:

Estimating Concentration in
Champagne Purchasing

(Modelling Count Data)

67

Problem

Marketers often talk about the “80/20 rule” — 80% of sales
(or revenues or profits) come from 20% of the customers.

Consider the following data on the number of bottles of
champagne purchased in a year by a sample of 568 French
households:

#Bottles\ 0O 1 2 3 45 6 7 8+
Frequency\zloo 60 30 20 8 8 9 6 27

What percentage of buyers account for 80% of champagne
purchasing? 50% of champagne purchasing?
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Concentration 101

- Concentration in customer purchasing means that a
small proportion of customers make a large proportion
of the total purchases of the product.

- A Lorenz curve is used to illustrate the degree of
inequality in the distribution of a quantity of interest
(e.g., purchasing, income, wealth).

- The Lorenz curve L(p) is the proportion of total
purchases accounted for by the bottom pth
percentile of purchasers.

- Constructed using the distribution of purchases.

69

Concentration 101

Hypothetical distribution of purchases:

80 1
60
v
=
S 40+
H*
20 1
0_
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Concentration 101

# # Total % % Cum. % Cum. %
Units People Units Buyers Purchases Buyers Purchases
0 70 0 0% 0% 0% 0%

1 45 45 45% 22% 45% 22%

2 25 50 25% 24% 70% 46%

3 15 45 15% 22% 85% 68%

4 10 40 10% 20% 95% 88%

5 5 25 5% 12% 100% 100%

71

Lorenz Curve
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# Bottles ‘

Back to the Data...
0O 1 2 3 4 5 6 7

8+

Frequency‘400 60 30 20 8 8 9 6 27

How many purchases occur in the 8+ cell?

- Do we assume 8 bottles per buyer? 12 per
buyer? 16 per buyer?

Cumulative % Purchases

100 -

80

73

Associated Lorenz Curves

—— 8 per buyer '/
- 12 per buyer '7'/
— — 16 per buyer y
"
1
7
60 7
7
I'/
III
4
40 /s
S/
// /
a4
/// <
20 - L
_r"——’——/’/
T T T T 1
0 20 40 60 80 100

Cumulative % Buyers
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Modelling Objective

We need to infer the full distribution from the right-
censored data ... from which we can create the Lorenz
curve.

— Develop a model that enables us to estimate the
number of people making 0,1, 2,...,7,8,9,10,...
purchases of champagne in a year.

75

Model Development

- Let the random variable X denote the number of
bottles purchased in a year.

- At the individual-level, X is assumed to be Poisson
distributed with (purchase) rate parameter A:

AXe—A
x!

P(X =x]|A) =
- Purchase rates (A) are distributed across the population
according to a gamma distribution:

o(rAr—le—(xA

gA|r,x) = T
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Model Development

- The distribution of purchases at the population-level is
given by:

PX=x|r,x) = J P(X=x|A)gA|r,x)dA
0
_T(r +x) ( o )”( 1 )x
CTr)x! \x+1 x+1
This is called the Negative Binomial Distribution, or
NBD model.

- The mean of the NBD is given by E(X) = v/ «.

77

Computing NBD Probabilities

- Note that

PX=x) r+x-1
PX=x-1) x(x+1)

- We can therefore compute NBD probabilities using the
following forward recursion formula:

s (X Y
x=0
(a+1)
P(X =x) =1
rEX ol px=x-1) x=1
L x(x+1)
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Estimating Model Parameters
The log-likelihood function is defined as:
LL(7,x|data) = 400 X In[P(X = 0)]+
60 x In[P(X =1)]+
-
6 XIn[P(X =7)]+
27 X In[P(X = 8)]

The maximum value of the log-likelihood function is
LL = —646.96, which occurs at # = 0.161 and & = 0.129.
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Estimating Model Parameters

A | B | ¢ | D | E | F
1 0.161
| 2 |alpha 0.129
%'—'— *646.96 | | n(ce)*B6 | | =BS15*C6 |
5] X f x  P(X=x) LON_ E(f x) (O-E)"2/E
6 0 400 _ 0.7052 -139.72 ~400.5| _ 0.001
[ 7] 1 607 0.1006 -137.80 57.1 0.144
8] 2 30 0.0517  -88.86 294 0.013
| 9| [=(82/(B2+1)"B1 | 00330  -68.23 187 0.084
7 > 00231  -30.14 13.1 1.997

10

11 5 0.0170| -9 =(B9-E9)*2/E9 0.288
12 /8:7 o j . : 0.362
13 | =(BS1+A11-1)/(A11%(BS2+1))*C10 |_27_57 57 0.012
14 8+ 27  0.0463  -82.96 26.3 0.019
115 568 2.919
7 EEEnTy

7] ot 6
18] Chi-sqcrit|  12.592
19 p-value 0.819
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Model Fit

400 g
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# Transactions
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Chi-square Goodness-of-Fit Statistic

Does the distribution F (x|0), with s model parameters
denoted by 0, provide a good fit to the sample data?

- Divide the sample into k mutually exclusive and
collectively exhaustive groups.

- Let f; (i =1,...,k) be the number of sample
observations in group i, p; the probability of belonging
to group i, and n the sample size.
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Chi-square Goodness-of-Fit Statistic

- Compute the test statistic

i nvl)z

- Reject the null hypothesis that the observed data come
from F(x|0) if the test statistic is greater than the
critical value (i.e., X > X5 _s_1)-

- The critical value can be computed in Excel using the
CHIINV function (and the corresponding p-value using
the CHIDIST function).
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Model Fit
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Decomposing the 8+ Cell

% People

8 10

12 14 16 18 20 22 24 26 28+

# Transactions

The mean for this group of people is 13.36 purchases per

buyer ... but with great variability.
85
Creating the Lorenz Curve
A | B | ¢ [ D | E [ F
1 |r 0.161 EXX) 1.248
2 |alpha 0.129
3 Cumulative
4 X P(X=x)| % Cust. % Purch. % Cust.| % Purch.
5 0  0.7052 0 0
6 1 01006 0.3412 ,0.0806 0.3412  0.0806
7 2 005177 01754 [0.0829 05166 0.1635
8 ~B6/(1-9855) 0.1119 / 0.0793  0.6286  0.2429
9 —— 0 0.0783 / 0.0740  0.7069  0.3169
10 5 00 0.0682  0.7646  0.3851
11 6 0.0fSU—vUumau— 0.0624 0.8086  0.4475
12 7 00101 0.0343 _ 0.0567 _ 0.8429 _ 0.5042
104] ~ 99 0.0000 5.09E-08 1.24E-06  1.0000 _ 1.0000
105 100 0.0000 4.64E-08 1.10E-06  1.0000  1.0000
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Lorenz Curve for Champagne Purchasing

100 |

Cumulative % Purchases

0 20 40 60 80 100

Cumulative % Buyers
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Concepts and Tools Introduced

- Counting processes

- The NBD model

- Using models to compute concentration in customer
purchasing
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Further Reading

Ehrenberg, A.S. C. (1988), Repeat-Buying, 2nd edn., London: Charles
Griffin & Company, Ltd. (Available at http://www.empgens.com/
ArticlesHome/Volume5/RepeatBuying.html)

Greene, Jerome D. (1982), Consumer Behavior Models for
Non-Statisticians, New York: Praeger.

Morrison, Donald G. and David C. Schmittlein (1988), “Generalizing
the NBD Model for Customer Purchases: What Are the Implications
and Is It Worth the Effort?” jJournal of Business and Economic
Statistics, 6 (April), 145-159.

Schmittlein, David C., Lee G. Cooper, and Donald G. Morrison (1993),
“Truth in Concentration in the Land of (80/20) Laws,” Marketing
Science, 12 (Spring), 167-183.
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Problem 4:

Test/Roll Decisions in
Segmentation-based Direct Marketing

(Modelling “Choice” Data)
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The “Segmentation” Approach

i. Divide the customer list into a set of (homogeneous)
segments.

ii. Test customer response by mailing to a random sample
of each segment.

iii. Rollout to segments with a response rate (RR) above
some cut-off point,

cost of each mailing
unit margin

e.g., RR >

91

Ben’s Knick Knacks, Inc.

- A consumer durable product (unit margin = $161.50,
mailing cost per 10,000 = $3343)

- 126 segments formed from customer database on the
basis of past purchase history information

- Test mailing to 3.24% of database

92



Ben’s Knick Knacks, Inc.

Standard approach:
- Rollout to all segments with

3,343/10,000
Test RR > 16150 = 0.00207

- 51 segments pass this hurdle

93

Test vs. Actual Response Rate

Rollout RR (%)

Test RR (%)
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Modelling Objective

Develop a model to help the manager estimate each
segment’s “true” response rate given the (limited)
test data.

95

Model Development

i. Assuming all members of segment s have the same
(unknown) response probability 0;, X has a binomial
distribution:

P(Xs = X5|1’}’l5, 95) = (1;}:5)9;65(1 - Qs)ms_xs y

with E(X;|mg, 05) = m;0;.

ii. Heterogeneity in 0, is captured using a beta
distribution:

0x1(1 — 0,)p1

g(es|0(’3): B(O(,B)
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The Beta Binomial Model

The aggregate distribution of responses to a mailing of
size m; is given by

P(X;s = x5lm;s &, B)
1
— J P(X; = x5|mg, 05) g(0s | &, B) dO
0

_ (mg\ B(x + x5, B+ Mg — X5)
X B(x, B)
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Estimating Model Parameters
The log-likelihood function is defined as:

126
LL(«x, Bldata) = > In[P(Xs = xs|mg, &, B)]
s=1
126

B mg! [N +x)I(B+ms —x5) T'(x+ B)
_Szlln[(ms—xs)!xs!L [+ B+ my) JLF(O()F(B)J]
B(cx+x5,BY+m57x5) l/B(cx,B)

The maximum value of the log-likelihood fungtion is
LL = —200.5, which occurs at & = 0.439 and 8 = 95.411.
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Estimating Model Parameters

Al B | ¢ [ D E
1 |alpha 1.000 B(alpha,beta) 1.000
2 |beta 1.000 y
3 |LL -718.9 <—|=SUM(E6:E131)| /
4
5 | Segment m_s Xx_s| P(X=x|m)
6 1 34 9> 0.02857 / -3.555
7 2 102 =EXP(GAMMALN(B1) P
8 3 53 +GAMMALN(B2) P
9 4 145 -GAMMALN(B1+B2)) B
10 - AN00C A Y e s .-.uunjU _/-I b
111 | =COMBIN(B6,C6)"EXP(GAMMALN(BS$1 by 4 977
12 +C6)+GAMMALN(B$2+B6-C6)- ¥ / 7120
13 GAMMALN(B$1+B$2+B6))/E$1 L= 3
= 11
4] ___9__ 1083 ___ 24 0.0009“vi8
130 125 383 0/ 0.00260  -5.951
131 126 404 0 0.00247  -6.004
99
Estimated Distribution of ©
20
15
g(0) 10 1
5 -
0 1 1 1 1 1 1 1 1 1 1

0.0 0.1 02 03 04 05 06 07 08 09 1.0

0
& = 0.439, 8 = 95.411, 0 = 0.0046
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Applying the Model

What is our best guess of 0; given a response of x;
to a test mailing of size m,?

Intuitively, we would expect

X X
E(®5|X5,7’l’l5)z(l)o( +(1_(U)_5

+ B m

101

Bayes’ Theorem

- The prior distribution g(0) captures the possible values
0 can take on, prior to collecting any information about
the specific individual.

- The posterior distribution g(0|x) is the conditional
distribution of 0, given the observed data x. It
represents our updated opinion about the possible
values 0 can take on, now that we have some
information x about the specific individual.

- According to Bayes’ Theorem:

 F(x10)g(0)
901%) = 15 x10)9(0) do
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Bayes’ Theorem

For the beta-binomial model, we have:

binomial beta

s N ——
P(Xs = x5lmg, 05) g(0s)

9(0s|Xs = x5, m5) = 1
JO P(Xs = xslms, 05) g(0s) dO;

beta-binomial

1 x+xs—1 —xs—1
— s 1 _ 0 B+m5 Xs
B(x+ x4, +ms — x5) ° ( )

which is a beta distribution with parameters « + x, and
B+ms — x;.
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Distribution of ©
150 4,

——— prior (& = 0.439, 8 = 95.411)

— — posterior with x; = 80, m; = 1,235

1004}y e posterior with x; = 0,ms; =171
g(0)
- 6 = 0.0604
50 4 v
: 6 = 0.0046 / \
4 ~ / \
\ ® = 0.0016 / \
/ \
~N
0 < . .
0 0.1 1
0
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Applying the Model

Recall that the mean of the beta distribution is &/ (x + B).
Therefore

X+ X

E(O,|X, = = =5
(051 X5 = x5, My) Xt BT

which can be written as
x+f x N ms X
x+p+ms) x+ B X+ B+ mg) mg

- a weighted average of the test RR (x;/m;) and the
population mean (x/(x + B)).

- “Regressing the test RR to the mean”
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Model-Based Decision Rule

- Rollout to segments with:

3,343/10,000
161.5

E(®5|XS = xs, ms) > = 0-00207

- 66 segments pass this hurdle

- To test this model, we compare model predictions with
managers’ actions. (We also examine the performance
of the “standard” approach.)
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Results

Standard Manager Model

# Segments (Rule) 51 66
# Segments (Act.) 46 71 53
Contacts 682,392 858,728 732,675
Responses 4,463 4,804 4,582
Profit $492,651 $488,773 $495,060

Use of model results in a profit increase of $6,287;
126,053 fewer contacts, saved for another offering.
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Concepts and Tools Introduced
- “Choice” processes
- The Beta Binomial model

- “Regression-to-the-mean” and the use of models to
capture such an effect

- Bayes’ Theorem (and “empirical Bayes” methods)

- Using “empirical Bayes” methods in the development of
targeted marketing campaigns

108



Further Reading

Colombo, Richard and Donald G. Morrison (1988), “Blacklisting Social
Science Departments with Poor Ph.D. Submission Rates,”
Management Science, 34 (June), 696-706.

Morwitz, Vicki G. and David C. Schmittlein (1998), “Testing New
Direct Marketing Offerings: The Interplay of Management Judgment
and Statistical Models,” Management Science, 44 (May), 610-628.
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Discussion
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Recap

- The preceding four problems introduce simple models
for three behavioral processes:

- Timing — “when”

- Counting — “how many”

- “Choice” — “whether/which”

- Each of these simple models has multiple applications.

- More complex behavioral phenomena can be captured
by combining models from each of these processes.
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Further Applications: Timing Models
- Repeat purchasing of new products

- Response times:
- Coupon redemptions
- Survey response

- Direct mail (response, returns, repeat sales)

- Other durations:

- Salesforce job tenure
- Length of web site browsing session

- Other positive “continuous” quantities (e.g., spend)
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Further Applications: Count Models
- Repeat purchasing
- Salesforce productivity/allocation

- Number of page views during a web site browsing
session

- Exposure distributions for banner ads
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Further Applications: “Choice” Models

- Brand choice

A B A A .

HH #1 — >
: B :

HH #2 — -
: B A :

HH #3 — >
: ' A B B B '

HH #h — >

- Media exposure
- Multibrand choice (BB — Dirichlet Multinomial)
- Taste tests (discrimination tests)

- “Click-through” behavior
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Integrated Models
- Counting + Timing

- catalog purchases (purchasing | “alive” & “death” process)
- “stickiness” (# visits & duration/visit)

- Counting + Counting

- purchase volume (# transactions & units/transaction)
- page views/month (# visits & pages/visit)

- Counting + Choice

- brand purchasing (category purchasing & brand choice)
- “conversion” behavior (# visits & buy/not-buy)
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A Template for Integrated Models

Stage 2
Counting Timing Choice

Counting

Stage 1 Timing

Choice
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Further Issues
Relaxing usual assumptions:

- Non-exponential purchasing (greater regularity)
— non-Poisson counts

- Non-gamma/beta heterogeneity (e.g., “hard core”
nonbuyers, “hard core” loyals)

- Nonstationarity — latent traits vary over time

The basic models are quite robust to these departures.
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Extensions

- Latent class/finite mixture models
- Introducing covariate effects
- Hierarchical Bayes (HB) methods

118



The Excel spreadsheets associated with this tutorial, along
with electronic copies of the tutorial materials, can be
found at:

http://brucehardie.com/talks.html

An annotated list of key books for those interested in
applied probability modelling can be found at:

http://brucehardie.com/notes/001/
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