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Problem 1:
Projecting Customer Retention Rates

(Modelling Discrete-Time Duration Data)



Motivating Problem

Consider a company with a subscription-based business
model. 1000 customers are acquired at the beginning of
Year 1 with the following pattern of renewals over the
subsequent four years:

Year 1 Year 2 Year 3 Year 4 Year 5

1000 631 468 382 326

- How many customers will “survive” to Year 6, 7, ...,
137

- What will the retention rates for this cohort look like
for the next 8 years?

Notation and Terminology

Year 1 Year 2 Year 3 Year 4 Year 5

t=3 t=4 5

468 382 326

- The empirical survivor function S(t) is the proportion
of the cohort that continue as a customer beyond t.

- Our modelling objective is to derive a mathematical
function for S(t), which can then be used to generate
the desired forecasts.



Modelling Objective
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Natural Starting Point
Project the survival curve using functions of time:
- Consider linear, quadratic, and exponential functions

- Let v = the proportion of customers surviving more
than t years

y = 0.881 — 0.160t R = 0.868
y =0.981 — 0.361t + 0.050t* R* = 0.989
In(y) = —-0.112 — 0.274t R? = 0.954
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Developing a Better Model (I)

At the end of each contract period, a customer makes the
renewal decision by tossing a coin: H — renew, T — don’t

renew
Length of relationship

1 period T

2 periods H T

3 periods H H T
P(T) t=1

P (t periods) =
P(H) x P(t — 1 periods) t=2,3,...

Developing a Better Model (I)
i) P(H) =1 — 0 is constant and unobserved.

ii) All customers have the same “churn probability” 0.

| A B C D E

1 |theta 0.2

2

3

4 t  # Cust. # Lost P(die) S(t)
5 0 1000 1.0000
6 1 631 | =1 p—> 0.2000 _ 0.8000
7 2 468 163 . 0.1600~ 0.6400
8 3 82 _—86 | =F5-p6| 0.5120
9 4 =D6*(1-SBS1) | D0.10247 0.4096
10
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Developing a Better Model (I)
More formally:

- Let the random variable T denote the duration of the
customer’s relationship with the firm.

- We assume that the random variable T has a geometric
distribution with parameter 0:

P(T=t|0)=0(1-0)"', t=1,2,3,...

S(t|0)=P(T>t|0)
=(1-6)! t=0,1,2,3,...
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Estimating Model Parameters
Assuming

i) the observed data were generated according to the
“coin flipping” story of contract renewal, and

ii) we know P(T) = 0,
the probability of the observed pattern of renewals is:
[P(T =1[0)PP[P(T=2]0)]""[P(T =310)]*°
X [P(T =410)1°°[S(t]0)]1°*°
= [01°9[0(1 - 0)]'[0(1 - 0)*]%°
X [0(1 - 0)°1°°[(1 - 0)*]°*°
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Estimating Model Parameters

- Suppose we have two candidate coins:
Coin A: 60 =0.2
CoinB: 6 =0.5

- Which coin is more likely to have generated the
observed pattern of renewals across this set of 1000

customers?

0 P(data|0) In[P(data]®)]

0.2 6.00 x 107647 —1488.0
0.5 1.40 x 10-747 -1719.7
13

Estimating Model Parameters
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Estimating Model Parameters
We estimate the model parameters using the method of
maximum likelihood:

- The likelihood function is defined as the probability of observing
the data for a given set of the (unknown) model parameters.

- It is computed using the model and is viewed as a function of the
model parameters:

L(parameters | data) = p(data | parameters) .

- For a given dataset, the maximum likelihood estimates of the
model parameters are those values that maximize L(-).

- It is typically more convenient to use the natural logarithm of the
likelihood function — the log-likelihood function.
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Estimating Model Parameters

The log-likelihood function is given by:

LL(O|data) =369 xIn[P(T =10)]+
163 X In[P(T =20)]+
86 XIn[P(T =310)]+
56 XIn[P(T =410)]+
326 X In[S(41]0)]

The maximum value of the log-likelihood function is
LL = —1451.2, which occurs at 0=0.272.

16



Estimating Model Parameters

A | B | <cC

| D | E |
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LL

0.2

-1488.0 -

=SUM(F6:F10)

# Cust.
1000
631
468
382
326

P WONER O ~+

# Lost

P(die) S(t)
1.0000
0.2000 0.8000
0.1600 n
0.11 =C6*LN(D6)
0.1024  0.4096

=B9*LN(E9)

369
163
86
56

—_—

-593.88
-298.71
-176.79
-127.62
-290.98
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Estimating Model Parameters

r N
Solver Parameters ﬁ
Set Objective: ses2 |

To: Q Mal Min Value Of;
By Changing Variable Cells:
851 =
Subject to the Constraints:
s8sl<=09999 | i |
$B51 >=0.0001 ==
hange |
Delete
Reset All |
Load/Save |
Make Unconstrained Variables Non-Negative
Select a Solving Method: GRG Nonlinear B Options |
Solving Method
Select the GRG Nanlinear engine for Solver Prablems that are smooth nonlinear. Select the LP Simplex engine
for linear Solver Problems, and select the Evelutionary engine for Solver problems that are non-smooth.
Help [ Solve ] ‘ Close
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% Surviving

| A | B | C D E F
1 |[theta 0.272
2 |LL -1451.2
3
4 t # Cust. # Lost P(die) S(t)
5 0 1000 1.0000
6 1 631 369 0.2717 0.7283 -480.88
7 2 468 163 0.1979 0.5305 -264.09
8 3 382 86 0.1441 0.3864 -166.60
9 4 326 56 0.1050 0.2814 -126.23
10 5 0.0764 0.2050 -413.36
11 6 0.0557 0.1493
12 7 0.0406 0.1087
13 8 0.0295 0.0792
14 9 0.0215 0.0577
15 10 0.0157 0.0420
16 11 0.0114  0.0306
17 12 0.0083 0.0223
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Survival Curve Projection
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What’s wrong with this story of customer

contract-renewal behavior?

21

Visualizing Parameter Estimates
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Accounting for Heterogeneity (I)

- Suppose we have two (unobserved) segments:

o 0, with probability 1T
0, with probability 1 — 1

- We compute
P(T =t]0y,0,,1)
=P(T=t|06=0,)P(O =0
+P(T=t|0=0,)P(O=20,)
=0:(1 -0t +0,(1 -0, — )
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Developing a Better Model (II)
Consider the following story of customer behavior:

i) At the end of each period, an individual renews his
contract with (constant and unobserved) probability
1-0.

ii) “Churn probabilities” vary across customers.

- Since we don’t know any given customer’s true value of
0, we treat it as a realization of a random variable (©®).

- We need to specify a probability distribution that
captures how 0 varies across customers (by giving us
the probability of each possible value of 0).

24



Developing a Better Model (II)

What is the probability that a randomly chosen new
customer will cancel their contract at the end of period t?

i) If we knew their 0, it would simply be
P(T=t]0)=0(1-0)"".

ii) Since we only know the distribution of ® across the
population, we compute

P(T =t) =Eo|P(T=1t]|0)],

i.e., we evaluate P(T =t | 0) for each possible value of
0, weighting it by the probability of a randomly chosen
new customer having that value of 0.

25

Vodafone Italia
Churn Clusters

100 A~

Cluster P(churn) %CB
Low risk 0.06 70 50
Medium risk 0.35 20
High risk 0.65 10
0 I 1 1 I 1 1

00 02 04 06 08 1.0

P (churn)

Source: “Vodafone Achievement and Challenges in Italy” presentation (2003-09-12)
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As the Number of Segments — oo

) Discrete ) Continuous
g(0)
| - I I 1 1 T 1
0.0 0.5 1.0 0.0 0.5 1.0
0 0
S 1
S P@O=0)=1 |, gt@ao -1
s=1
28 — 1 parameters k parameters
27

Accounting for Heterogeneity (II)

- We move from a finite number of segments (a finite

mixture model) to an infinite number of segments (a
continuous mixture model).

- We choose a continuous distribution for 0, with

probability density function (pdf) g (0 | parameters).

- We compute Eg[P(T =t |0)]:

P(T =t | parameters)

1
— J P(T=t]|0=0)g(0|parameters) do .
0

28
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Accounting for Heterogeneity (II)

) Discrete ) Continuous
g0)
| T I 1 1 T 1
0.0 0.5 1.0 0.0 0.5 1.0
0 0
0y 1
S P@O=0)=1 |, gt@ao -1
s=1
P(T =t) =Ee[P(T =t]0)]
S 1
S P(T=t10=0,P(6 = 0,) | PT=ti0-0)g(0)d0
s=1
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The Beta Distribution

- The beta distribution is a flexible (and mathematically

convenient) two-parameter distribution bounded
between O and 1:

93/—1(1 _ 9)6—1
B(y,6)

g(9|)’,5) =

where y,6 > 0 and B(y, ) is the beta function.

- The mean of the beta distribution is

Y

E(®):y+5'

30



INlustrative Beta Distributions
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Five General Shapes of the Beta Distribution
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The Beta Function

- The beta function B(y, 0) is defined by the integral

1
B(y,d8) = J tY~1(1-t)°'dt, y > 0,6 > 0,
0

and can be expressed in terms of gamma functions:

I'(y)I'(0)

By o) =1+

- The gamma function I'(y) is a generalized factorial,
which has the recursive property I'(y + 1) = yI'(y).
SinceI'(0) = 1,I'(n) = (n — 1)! for positive integer n.
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Developing a Better Model (II)

For a randomly chosen individual,

r1

P(T=tly,0)=| P(T=t]|0)g(0@]y,0)do
0

J

r1 93/—1(1 _ 9)6—1
=| 0(1-0)""!
N T

1
J 0Y(1 —0)°" 240
0

dao

1
B(y, o)
_B(y+1,0+t-1)
- B(y,d)
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Developing a Better Model (II)

Similarly,

r1

Stly,o) = . St16)g(01y,o)de

r1 9;/—1(1 _ 9)5—1
_ . t
_ao(l 0) B(y.0) ao
1
~ gy |, a0 a0
_ B(y,6 +1)
- B(y,0)

We call this continuous mixture model the beta-geometric
(BG) distribution.

35

Developing a Better Model (II)

We can compute BG probabilities using the following
forward-recursion formula from P(T = 1):

Y

t=1
y+0
P(T=t)=-
O+t—2
gy+6+t—1XP(T_t_1) t=2,3,...
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Estimating Model Parameters
Assuming

i) the observed data were generated according to the
heterogeneous “coin flipping” story of contract
renewal, and

ii) we know y and 9,
the probability of the observed pattern of renewals is:

[P(T=1y,0)P°[P(T=2]y,5)1'"[P(T=3]y,5)]%
X[P(T=4]y,56)1°°[S(4]y,5)]%%°

37

Estimating Model Parameters

The log-likelihood function is given by:

LL(y,6|data) =369 X In[P(T=1|y,0)]+
163 X In[P(T =2|y,0)] +
86 x In[P(T =3|y,5)] +
56 X In[P(T =41y,0)]+
326 X In[S(4|y,0)]

The maximum value of the log-likelihood function is
LL = —1401.6, which occurs at y = 0.764 and 5 =1.296.

38



Surface Plot of BG LL Function

Contour Plot of BG LL Function




Estimating Model Parameters

Al B | ¢ | b | E | F
1 |gamma 1.000
2 |delta 1.000
3 |LL -1454.0
4
5 t # Cust. # Lost P(die) S(t)
6 0 1000 1.0000
7 1 =B1/(B1+B2) [9—= 0.5000 0.5000 -255.77
8 2 468 163 0.1667 0.3333 -292.06
9 3 382 00833 0.2500 -213.70
10 =D7*(SBS2+A8-2)/(SBS1+SBS2+A8-1) | 2000 -167.76
11 -524.68
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Estimating Model Parameters

~
Solver Parameters ﬂ

Set Objective: 5853 %
To: @) Max Min Value Of:

By Changing Variable Cells:
$B$1:58%2 ES

Subject to the Constraints:

$B51:5852 >= 0.0001 Al add
Change
Delete
Reset Al
Load/Save
| Make Unconstrained Variables Non-Negative
Sglect a Solving Method: GRG Nonlinear z| Options
Salving Method
Select the GRG Nonlinear engine for Solver Problems that are smooth nonlinear. Select H'le LP Simplex engine
for linear Solver Problems, and select the Evolutionary engine for Solver problems that a n-smooth.
tielp L Sohve Cigse
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Estimated Distribution of Churn Probabilities

3_
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Year 1
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< 40 A
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0.0 0.2 0.4 0.6 0.8 1.0

0
E(®) =0.371 — expect 1000 x (1 —0.371) =629

customers to renew at the end of Year 1.
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Year 2

60 1
L 40 A
g
&
0 - HHH"Il|||||||II|“"“"|IIII||..
0.4 0.6 0.8

0.0 0.2 1.0

0
E(®) =0.250 — expect 629 x (1 — 0.250) =472 customers

to renew at the end of Year 2.
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0.0 0.2 0.4 0.6 0.8 1.0

0
E(®) =0.188 — expect 472 x (1 —0.188) = 383 customers

to renew at the end of Year 3.
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Year 4

60 -

40 -

0 ‘

: H“l"““I“llllln.l..
2 0.4 0.6

0.0 0

# People

0.8 1.0

0

E(®) =0.151 — expect 383 x (1 —0.151) = 325 customers
to renew at the end of Year 4.
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A | B | ¢ [ b | E | F
1 [gamma 0.764
2 |delta 1.296
3 |LL -1401.6
4
5 t # Cust. # Lost P(die) S(t)
6 0 1000 1.0000
7 1 631 369 0.3708 0.6292 -366.08
8 2 468 163 0.1571 0.4721 -301.74
9 3 382 86 0.0888 0.3833 -208.22
10 4 326 56 0.0579 0.3255 -159.59
11 5 0.0410 0.2845 -365.93
12 6 0.0308 0.2537
13 7 0.0240 0.2296
14 8 0.0194 0.2103
15 9 0.0160 0.1943
16 10 0.0134 0.1809
17 11 0.0115 0.1694
18 12 0.0099 0.1595
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Survival Curve Projection
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Implied Retention Rates

- The retention rate for period t is defined as the
proportion of customers who had renewed their
contract at the end of period t — 1 who then renewed
their contract at the end of period t.

- For any model of customer tenure with survivor
function S(t),

S(t)

"Esa-1-

50



Implied Retention Rates

- For the BG model,

o+t -1
Cy+6+t-1°

"t
- An increasing function of time, even though the
individual-level retention probability is constant.

- A sorting effect in a heterogeneous population.

51

Projecting Retention Rates
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Concepts and Tools Introduced

- The concept of duration-time data, with a specific
focus on single-event discrete-time data.

- The idea of building a “probability model” to
characterize the observed behavior of interest.

- The method of maximume-likelihood as a means of
estimating model parameters.

- The notion of finite- and continuous-mixture models.

- The beta-geometric (BG) distribution as a model of
contract renewal behavior.

- Retention rate “dynamics.”

53

Further Reading
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From Discrete to Continuous Time

- We have considered a setting where the discrete
contract period is annual.

- In some cases, there is a quarterly contract period,
others monthly.

- In a number of cases, the contract is effectively
“renewed” on a daily basis = “continuous” time.

55

From Discrete to Continuous Time
As the number of divisions of a given time period — oo,

geometric — exponential
BG — gamma mixture of exponentials

= Pareto Type II
.
S(tl’r,a)=< = )

X+t

56



From Discrete to Continuous Time

- A continuous-time model can be fitted to discrete-time
by treating it as “interval-censored” data:

P(T=t)=5t)-S(t-1).

- The fit and associated forecasts of the Pareto Type II
are exactly the same as those of the BG.

- Tend to favor a discrete-time model given ease of story
telling.

- We use a continuous-time model when we wish to
incorporate the effects of covariates.

57

Further Reading

Hardie, Bruce G.S., Peter S. Fader, and Michael Wisniewski (1998), “An
Empirical Comparison of New Product Trial Forecasting Models,”
Journal of Forecasting, 17 (June-July), 209-229.

Morrison, Donald G. and David C. Schmittlein (1980), “Jobs, Strikes,
and Wars: Probability Models for Duration,” Organizational Behavior
and Human Performance, 25 (April), 224-251.
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Limited Information,” Journal of Marketing, 72 (January), 82-94.
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An Introduction to Probability Models

59

The Logic of Probability Models

- The actual data-generating process that lies behind any
given data on buyer behavior embodies a huge number
of factors.

- Even if the actual process were completely
deterministic, it would be impossible to measure all the
variables that determine an individual’s buying
behavior in any setting.

—> Any account of buyer behavior must be expressed

in probabilistic/random/stochastic terms so as to
account for our ignorance regarding (and/or lack
of data on) all the determinants.

60



The Logic of Probability Models

- Rather than try to tease out the effects of various
marketing, personal, and situational variables, we
embrace the notion of randomness and view the
behavior of interest as the outcome of some
probabilistic process.

- We propose a model of individual-level behavior that is
“summed” across individuals (taking individual
differences into account) to obtain a model of
aggregate behavior.

61

“Winwood Reade is good upon the subject,” said Holmes.
“He remarks that, while the individual man is an insoluble
puzzle, in the aggregate he becomes a mathematical
certainty. You can, for example, never foretell what any
one man will do, but you can say with precision what an
average number will be up to.”

Sir Arthur Conan Doyle, The Sign of the Four, 1890.
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Applications of Probability Models

- Summarize and interpret patterns of market-level
behavior

- Predict behavior in future periods, be it in the
aggregate or at a more granular level (e.g., conditional
on past behavior)

- Make inferences about behavior given summary
measures

- Profile behavioral propensities of individuals

- Generate benchmarks/norms

63

Building a Probability Model

(i) Determine the marketing decision problem/
information needed.

(ii) Identify the observable individual-level behavior of
interest.
- We denote this by x.
(iii) Select a probability distribution that characterizes this
individual-level behavior.
- This is denoted by f(x|0).

- We view the parameters of this distribution as
individual-level latent traits.
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Building a Probability Model

(iv) Specify a distribution to characterize the distribution
of the latent trait variable(s) across the population.

- We denote this by g(0).

— This is often called the mixing distribution.

(v) Derive the corresponding aggregate or observed
distribution for the behavior of interest:

Flx) = jf(x|9>g(9)d9

65

Building a Probability Model

(vi) Estimate the parameters (of the mixing distribution) by
fitting the aggregate distribution to the observed data.

(vii) Use the model to solve the marketing decision
problem/provide the required information.

66



Outline
Problem 1: Projecting Customer Retention Rates
(Modelling Discrete-Time Duration Data)

Problem 2: Estimating Concentration in Champagne
Purchasing
(Modelling Count Data)

Problem 3: Test/Roll Decisions in Segmentation-based
Direct Marketing
(Modelling “Choice” Data)
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Problem 2:

Estimating Concentration in
Champagne Purchasing

(Modelling Count Data)
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Concentration 101

- Concentration in customer purchasing means that a
small proportion of customers make a large proportion
of the total purchases of the product (e.g., “80/20”).

higher concentration < greater inequality

- The Lorenz curve is used to illustrate the degree of
inequality in the distribution of a quantity of interest
(e.g., purchasing, income, wealth).

- The greater the curvature of the Lorenz Curve, the
greater the concentration/inequality.

69

Concentration 101

100 A
80 ~
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Cumulative % Quantity

20 A

0 20 40 60 80 100

Cumulative % Individuals
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Concentration 101

- Every point on the Lorenz curve represents the y% of
the quantity of interest accounted for by the bottom
x% of all relevant individuals:

vy = L(x)

- 80/20 represents a specific point on the Lorenz curve:
20 = L(80).

- The Gini coefficient is the ratio of the area between the
45° line (“line of perfect equality”) and the Lorenz
curve to the area under the line of perfect equality.
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Concentration 101

Hypothetical distribution of purchases (n = 170 people):

80 1

60 -

40 A

20 - l

0 iIm .
0 1 2 3 4 5

# Units

# People
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Concentration 101

# = Total % % Cum. % Cum. %
Units People Units Buyers Purchases Buyers Purchases
0 70 0 0% 0% 0% 0%

1 45 45 45% 22% 45% 22%

2 25 50 25% 24% 70% 46%

3 15 45 15% 22% 85% 68%

4 10 40 10% 20% 95% 88%

5 5 25 5% 12% 100% 100%

Total units: 205
Total buyers: 100

73

Lorenz Curve
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Calculations Revisited

AlB|] ¢ | b | E | F | e [ w | 1+ |
1 x f x % buyers P{X=x) % buyers
2 0 70 =B2/$BS8 --> 0.412
3 1 45 45% <-- =B3/($B$8-$B$2) 0.265 45% <-- =F3/(1-$F$2)
4 2 25 25% 0.147 25%
5 3 15 15% 0.088 15%
6 4 10 10% 0.059 10%
7 5 5 5% 0.029 5%
8 170
9
10 x f_x Totunits % purch. P(X=x) xP(X=x) % purch.
11 0 70 0 0% 0.412 0.000 0%
12 1 45 45 22% <--=C12/$C$17 0.265 0.265 22% <--=G12/$GS$17
13 2 25 50 24% 0.147 0.294 24%
14 3 15 45 22% 0.088 0.265 22%
15 4 10 40 20% 0.059 0.235 20%
16 5 5 25 12% 0.029 0.147 12%
17 170 205 =SUM(G11:G16) --> 1.206
18 average 1.206 <-- =C17/B17
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Problem

Consider the following data on the number of bottles of
champagne purchased in a year by a sample of 568 French
households:

#Bottles‘ 0 1 2 3 4 5 6 7 8+
Frequency‘400 60 30 20 8 8 9 6 27

What percentage of buyers account for 80% of champagne
purchasing? 50% of champagne purchasing?

Data source: Gourieroux and Visser (Journal of Econometrics, 1997)
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Associated Lorenz Curves
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Modelling Objective

We need to infer the full distribution from the right-
censored data ... from which we can create the Lorenz
curve.

— Develop a model that enables us to estimate the
number of people purchasing 0,1,2,...,7,8,9,...
bottles of champagne in a year.
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Model Development

- Let the random variable X denote the number of

bottles purchased in a year.

- At the individual-level, X is assumed to be Poisson
distributed with (purchase) rate parameter A:

AXe—A

P(X=x|A) = X

The mean and variance of the Poisson are

E(X|A)=A and var(X |A) = A.
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Accounting for Heterogeneity

- Assume purchase rates are distributed across the
population according to a gamma distribution:

o(rAr—le—ch
L(r) °

gAlr,x) =

where v is the “shape” parameter and « is the “scale”
parameter.

- The gamma distribution is a flexible (unimodal)
distribution ... and is mathematically convenient.
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Illustrative Gamma Density Functions
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Model Development
- For a randomly chosen individual,
P X=x|7r,x =J P(X=x|A)gA|r,x)dA
0
~TI'(r +x) < X )”( 1 )X
C Tr)x! \x+1 x+1

This gamma mixture of Poissons is called the Negative

Binomial Distribution (NBD).

The mean and variance of the NBD are
EX |7, = r and var(X |7, ) = r + Lz
10'¢ X
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Computing NBD Probabilities

- Note that
P(X=x) r+x-1

PX=x-1 x(x+1)

- We can therefore compute NBD probabilities using the
following forward recursion formula:

- NN
<a+1> x=0
PX=x|r,a) = -
r+x-—1
—— X XxP(X=x-1 > 1
kx(a+1)x ( * ) x=
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Estimating Model Parameters

The log-likelihood function is defined as:

LL(r,x|data) =400 X In[P(X =0) ]+
60 X In[P(X =1)]+
n
6 XIn[P(X =7)]+
27 X In[P(X = 8)]

The maximum value of the log-likelihood function is
LL = —646.96, which occurs at ¥ = 0.161 and & = 0.129.
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# People

Estimating Model Parameters

400 A

300 A

200 A

100 -

| A B c | D
1 |r 0.161
2 |alpha 0.129
2 LL -646.96 [ —|N(C6)*B6
5 X fx P(XX=x) fw
6 0 400 , 0.7052 -139.72
7 1 0.1006 -137.80
8 2 30 00517 -88.86
9 =(B2/(B2+1))*B1 0.0330 -68.23
10 7 5’ 00231  -30.14
11 5 > 00170  -32.59
12 X /&* aesna——3q {1
13| =(BS1+A11-1)/(A11*(B$2+1))*C10 |5 -
14 8+ 27 0.0463  -82.96
15 568 f
16
17 =1-SUM(C6:C13)
18 |
85
Model Fit
B Actual
[ ] Model
1 IIH .I|_| -II_| -Il_| -I'_| -I'_| _I'_| .I|_|
0 1 2 3 4 5 6 7 8+

# Transactions
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Chi-square Goodness-of-Fit Statistic

Does the distribution F(x|0), with s model parameters
denoted by 0, provide a good fit to the sample data?

- Divide the sample into k mutually exclusive and
collectively exhaustive groups.

- Let f; (i =1,...,k) be the number of sample
observations in group i, p; the probability of belonging
to group i, and n the sample size.
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Chi-square Goodness-of-Fit Statistic

- Compute the test statistic

i mol)2

- Reject the null hypothesis that the observed data come
from F(x|0) if the test statistic is greater than the
critical value (i.e., X* > X5 x_s_1)-

- The critical value can be computed in Excel 2010 using
the CHISQ.INV.RT function (and the corresponding
p-value using the CHISQ.DIST.RT function).
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Model Fit

A | B [ ¢ | b | E | F
1 |r 0.161
2 |alpha 0.129
3 |LL -646.96 = *
y B$15*C6
5 X fx PX=x) LL E(f_x) (O-E)*2/E
6 0 400 0.7052 -139.72 \400.5 0.001
7 1 60 0.1006 -137.80 57.1 0.144
8 2 30 0.0517 -88.86 294 0.013
9 3 20/ 0.0330 -68.23 18.7 0.084
10 4 8 0.0231 -30.14 13.1 1.997
11 5 8 0.0170 -3 =(B9-E9)"2/E9 0.288
12 6 9 0.0130 -30. 7. 0.362
13 7 6 0.0101 -27.57 5.7 0.012
14 8+ 27/ 0.0463 -82.96 26.3 0.019
15 568 2.919
16
17 df 6
18 Chi-sq crit 12.592
19 p-value 0.819
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Decomposing the 8+ Cell

% People

8§ 10 12 14 16 18 20 22 24 26 28+

# Transactions

The mean for this group of people is 13.36 purchases per
buyer ... but with great variability.
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Creating the Lorenz Curve

A B | ¢ | D | E | F
1 ]r 0.161 E(X) 1.248
2 |alpha 0.129
3 Cumulative
4 X P(X=x)| % Cust. % Purch. % Cust.| % Purch.
5 0  0.7052 0 0
6 1 0.1006 0.3412 ,0.0806  0.3412  0.0806
7 2 00517,/ 0.1754 /0.0829 0.5166  0.1635
8 _B6/(1-5BS5) 0.1119 / 0.0793  0.6286  0.2429
9 =——vuwzor  0.0783 / 0.0740 07069  0.3169
10 5  0.01 =A6*36/$D$1i 0.0682  0.7646  0.3851
11 6 0.01Su—UuUzsu— 0.0624  0.8086  0.4475
12 7 00101 0.0343  0.0567 _ 0.8429  0.5042]
104] ~ ~ 99 0.0000 5.29E-08 1.24E-06  1.0000 _ 1.0000
105 100 0.0000 4.64E-08 1.10E-06  1.0000  1.0000

Lorenz Curve for Champagne Purchasing

Cumulative % Purchases
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Concepts and Tools Introduced
- The concept of count data.
- The NBD as a model for count data.

- The notion of concentration, and the Lorenz curve as a
means of illustrating the level of “inequality” in the
quantity of interest.

- Using a probability model infer a full distribution given
right-censored data.
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Further Reading

Ehrenberg, A.S.C. (1959), “The Pattern of Consumer Purchases,”
Applied Statistics, 8 (March), 26-41.

Greenwood, Major and G. Udny Yule (1920), “An Inquiry into the
Nature of Frequency Distributions Representative of Multiple
Happenings with Particular Reference to the Occurrence of
Multiple Attacks of Disease or of Repeated Accidents,” Journal
of the Royal Statistical Society, 83 (March), 255-279.

Greene, Jerome D. (1982), Consumer Behavior Models for
Non-Statisticians, New York: Praeger.
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Further Reading

Ehrenberg, A.S. C. (1988), Repeat-Buying, 2nd edn, London:
Charles Griffin & Company, Ltd. (Available at http://www.
empgens.com/ArticlesHome/Volume5/RepeatBuying.html)

Morrison, Donald G. and David C. Schmittlein (1988),
“Generalizing the NBD Model for Customer Purchases: What Are
the Implications and Is It Worth the Effort?” Journal of Business
and Economic Statistics, 6 (April), 145-159.

Schmittlein, David C., Lee G. Cooper, and Donald G. Morrison
(1993), “Truth in Concentration in the Land of (80/20) Laws,”
Marketing Science, 12 (Spring), 167-183.
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Problem 3:

Test/Roll Decisions in
Segmentation-based Direct Marketing

(Modelling “Choice” Data)
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The “Segmentation” Approach

i) Divide the customer list into a set of (homogeneous)
segments.

ii) Test customer response by mailing to a random sample
of each segment.

iii) Rollout to segments with a response rate (RR) above
some cut-off point,

cost of each mailing

e.g., RR > : :
unit margin
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Ben’s Knick Knacks, Inc.

- A consumer durable product (unit margin = $161.50,
mailing cost per 10,000 = $3343)

- 126 segments formed from customer database on the
basis of past purchase history information

- Test mailing to 3.24% of database

98



Ben’s Knick Knacks, Inc.

Standard approach:
- Rollout to all segments with

3,343/10,000
Test RR > 16150 = 0.00207

- 51 segments pass this hurdle
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Test vs. Actual Response Rate

Rollout RR (%)

Test RR (%)
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Modelling Objective

Develop a model to help the manager estimate each
segment’s “true” response rate given the (limited)
test data.
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Model Development

Notation
N, = size of segment s (s =1,...,5)
m, = # members of segment s tested
X = # responses to test in segment s
Assumptions

i) All members of segment s have the same (unknown)
response probability 6, = X is a binomial random
variable:

P(X = X |mSa 95) = (m5>9§®(1 — Qs)ms_xs
Xs
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Distribution of Response Probabilities

ii) Heterogeneity in 0, is captured by a beta distribution:

0% 1(1 — 0,)8-1
B(x, B)

9(93|0(,B) =

It follows that the aggregate distribution of responses to a
mailing of size m; is given by

1
P(X; =xs|m;x B) = Jo P(X; = xs|mg,05) g(0s | x, B) dO;

X B(«x, B)

This is know as the beta-binomial (BB) distribution.

_ (ms> B(x + x5, B+ mg — Xs)
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Numerical Evaluation of the Beta Function
- Not all computing environments have a beta function.

- Recall
I'(e)T(B)

B(x,B) = Tt B)

- We typically have a function that evaluates In (I'(-)).

- In Excel we have gammaln:
I'(x) = exp(gammaln(x))
B(x, B) = exp(gammaln(x)+gammaln(p)
-gammaln(x+pB))
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Estimating Model Parameters

The log-likelihood function is defined as:

LL(x, B | data)

126
= > In{P(X; = x; | my, , B)}

s=1

126 ms\ B(x + x5, B+ M — X5)
=S§11n{(x3> B(e, B) }
B lfm{ ms! (& +x5)T(B + ms — x5) /r<o<)r<3) }
= )

(ms — x4)! x5! [N+ B+ mg I'(x+ B)

The maximum value of the log-likelihood function is
LL = —200.5, which occurs at & = 0.439 and B = 95.411.
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Estimating Model Parameters

A B [ ¢ | D E
1 |alpha 1.000 B(alpha,beta) 1.000
2 |beta 1.000 | y
3 |LL -718.9 <—=SUM(E6:E131)| //’
4
5 | Segment m_s x s PX=xjm) /
6 1 34 9= 0.02857 / -3.555
7 2 102 =EXP(GAMMALN(B1) |
8 3 53 +GAMMALN(B2) [
9 4 145 -GAMMALN(B1+B2)) #|
10 - 10C4 Cr—rrrorTg Ty -7.135
771 | =COMBIN(B6,C6)*EXP(GAMMALN(B$1 b _,"g7~
12 +C6)+GAMMALN(B$2+B6-C6)- 1 7 7 120
13 GAMMALN(B$1+B$2+B6))/E$1 / 3
‘ =LN(D11) %]
14] ___9__ 1083 _ _ 24 _0.0009=———o38
130 125 383 0/ 0.00260  -5.951
131 126 404 0 0.00247  -6.004
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Estimated Distribution of ®
20 A

15 A+

g(0) 10 -

& =0.439, 8 = 95.411, E(®) = 0.0046
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Applying the Model

What is our best guess of 0, given a response of x;
to a test mailing of size m;?

Intuitively, we would expect

X X
E(@5|X5,m5)%w(x +(1_w)_s

+ B mg
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Bayes’ Theorem

- The prior distribution g(0) captures the possible values
0 can take on, prior to collecting any information about
the specific individual.

- The posterior distribution g(0|x) is the conditional
distribution of 9, given the observed data x. It
represents our updated opinion about the possible
values 6 can take on, now that we have some
information x about the specific individual.

- According to Bayes’ Theorem:

 f(x10)g(0)
901%) = 15 x16)9(6) do

109

Bayes’ Theorem

For the beta-binomial model, we have:

binomial beta

- A -~——
P(Xs = x5|lmg, 05) g(0s)

g(O0s|Xs = x5,m5) = —
JO P(Xs = x5|lmg, 05) g(0s5) dOs

g

beta-binomial

1 x+xs—1 —Xo—
— s 1 _ 9 B+m5 Xg 1
B(x + x5, B+ms —x5) ° ( s)

which is a beta distribution with parameters « + x, and
B + mS - XS.
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Distribution of ®

150 4.
—— prior (& = 0.439, B = 95.411)
— — posterior with x; = 80, m; = 1235 (RR = 0.065)
100 4t e posterior with x; = 0,m; = 171 (RR = 0.000)
g(0)
P E(®) = 0.0604
50 - I
E(®) = 0.0046 / \
/ \
E(®) =0.0016 / \
‘\ \
~
0 : zz :
0 0.1 1
0
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Impact of Sample Size on the Posterior

Four segments, each with a response rate of 0.04:

150
prior, E(®) = 0.005
mg =50, E(®) =0.017
m, = 100, E(®) = 0.023
100 - ms = 500, E(®) = 0.034
mg = 1000, E(®) = 0.037
50
0 — | |
0.00 0.03 0.04 0.05
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Applying the Model

Recall that the mean of the beta distribution is &/(x + B).
Therefore

X+ X

E(O;| X = x;, =
(Os] X5 = x4, My) X+ B+ m,

which can be written as

O(-l—ﬁ X mg Xs
X+ B+ mg o<+[3Jr x+ B +mg) mg

- a weighted average of the test RR (x;/m;) and the

population mean («/(x + B)).

- “Regressing the test RR to the mean”
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Model-Based Decision Rule

- Rollout to segments with:

3,343/10,000
161.5

E(®S|X5 — xs,m_g) > - 000207

- 66 segments pass this hurdle

- To test this model, we compare model predictions with
managers’ actions. (We also examine the performance
of the “standard” approach.)
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Results

Standard Manager Model

# Segments (Rule) 51 66
# Segments (Act.) 46 71 53
Contacts 682,392 858,728 732,675
Responses 4463 4 804 4 582
Profit $492,651 $488,773 $495,060

Use of model results in a profit increase of $6,287;
126,053 fewer contacts, saved for another offering.
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Empirical Bayes Methods

- Bayesian analysis methods see us fixing the prior
distribution before any data are observed.

- Empirical Bayes methods see us estimating the prior
distribution from the data.

- When this prior has a parametric form, we are using
parametric empirical Bayes methods.

“There is no one less Bayesian than an empirical Bayesian.”

Dennis Lindley
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Conjugate Priors

- When the posterior distribution comes from the same
family as the prior distribution, the prior and posterior
are called conjugate distributions and the prior is called
the conjugate prior (= a closed-form expression for
the posterior, which is mathematically convenient.)

- A distribution is a conjugate prior when its kernel is
the same as that of the likelihood:

prior likelihood
ox1(1-0)F1 6X(1-0)"~
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Concepts and Tools Introduced

- “Choice” processes

- The Beta Binomial model

- “Regression-to-the-mean” and the use of models to
capture such an effect

- Bayes’ theorem and conjugate priors.
- The notion of (parametric) empirical Bayes methods.

- Using empirical Bayes methods in the development of
targeted marketing campaigns
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Further Reading

Colombo, Richard and Donald G. Morrison (1988), “Blacklisting
Social Science Departments with Poor Ph.D. Submission Rates,”
Management Science, 34 (June), 696-706.

Morwitz, Vicki G. and David C. Schmittlein (1998), “Testing New
Direct Marketing Offerings: The Interplay of Management
Judgment and Statistical Models,” Management Science, 44
(May), 610-628.

Maritz, J.S. and T. Lwin (1989), Empirical Bayes Methods, 2nd
edn, London: Chapman and Hall.
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Discussion
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Recap

The preceding problems introduce simple models for three
behavioral processes:

- Timing — “when /how long”
- Counting — “how many”

- “Choice” — “whether /which”

Phenomenon Individual-level = Heterogeneity = Model
Timing (discrete) geometric beta BG
(or counting)
Timing exponential gamma Pareto Type II
(continuous)
Counting Poisson gamma NBD
Choice binomial beta BB
121

Further Applications: Timing Models

- Response times:
- Coupon redemptions
- Survey response

- Direct mail (response, returns, repeat sales)

- Other durations:
— Salesforce job tenure

- Length of web site browsing session

- Other positive “continuous” quantities (e.g., spend)
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Further Applications: Count Models
- Media exposure (e.g., billboards, banner ads)

- Number of page views during a web site browsing

session
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Further Applications: “Choice” Models

- Brand choice

LA B A A

HH #1 — >
! B !

HH #2 — >
: B A :

HH #3 — —
: ' A B B B '

HH #h — >

- Multibrand choice (BB — Dirichlet Multinomial)
- Media exposure
- Taste tests (discrimination tests)

- “Click-through” behavior
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Integrated Models

More complex behavioral phenomena can be captured by
combining models from each of these processes:
Counting + Timing
- catalog purchases (purchasing | “alive” & “death” process)

- “engagement” (# visits & duration/visit)

Counting + Counting
- purchase volume (# transactions & units/transaction)

- page views/month (# visits & pages/visit)

Counting + Choice

- brand purchasing (category purchasing & brand choice)

- “conversion” behavior (# visits & buy/not-buy)
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A Template for Integrated Models

Stage 2

Counting  Timing Choice

Counting

Stage 1  Timing

Choice
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Further Issues
- Relaxing usual assumptions:

- Non-exponential purchasing (greater regularity)
— non-Poisson counts

- Non-gamma/beta heterogeneity (e.g., “hard core”
nonbuyers, “hard core” loyals)

- Nonstationarity — latent traits vary over time

- The basic models are quite robust to these departures.
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Extensions
- Latent class/finite mixture models
- Introducing covariate effects

- Hierarchical Bayes (HB) methods
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The Excel spreadsheets associated with this tutorial, along
with electronic copies of the tutorial materials, can be
found at:

http://brucehardie.com/talks.html

An annotated list of key books for those interested in
applied probability modelling can be found at:

http://brucehardie.com/notes/001/
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