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1 Introduction

Schmittlein et al. (1987) and Fader and Hardie (2020) derive expressions for P(X (t) = x), where
the random variable X (t) denotes the number of transactions observed in the time interval (0, ¢],
as implied by the Pareto/NBD model assumptions. In this note, we derive the corresponding
expression for P(X(¢,t 4 7) = z), where the random variable X (¢,¢ 4+ 7) denotes the number of
transactions observed in the time interval (¢, ¢+ 7].

In Section 2 we review the assumptions underlying the Pareto/NBD model. In Section 3, we
derive an expression for P(X(t,t 4+ 7) = x) conditional on the unobserved latent characteristics A
and p. This conditioning is removed in Section 4.

2 Model Assumptions
The Pareto/NBD model is based on the following assumptions:

i. Customers go through two stages in their “lifetime” with a specific firm: they are “alive” for
some period of time, then become permanently inactive (i.e., “die”).

ii. While alive, the number of transactions made by a customer follows a Poisson process with
transaction rate A\. This implies that the probability of observing x transactions in the time
interval (0, ] is given by
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It also implies that, assuming the customer is alive through the time interval (¢, tp],
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iii. A customer’s unobserved lifetime of length w (after which he is viewed as being inactive) is
exponentially distributed with dropout rate u:
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iv. Heterogeneity in transaction rates across customers follows a gamma distribution with shape
parameter r and scale parameter a:
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v. Heterogeneity in dropout rates across customers follows a gamma distribution with shape
parameter s and scale parameter [3:
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vi. The transaction rate A and the dropout rate p vary independently across customers.
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3 P(X(t,t+ 7) = x) Conditional on A and u

Suppose we know an individual’s unobserved latent characteristics A and p. For x > 0, there are
two ways x purchases could have occurred in the interval (¢,t + 7]:

i. The individual was alive at ¢ and remained alive through the whole interval; this occurs with
probability e #(*+7)  The probability of the individual making = purchases, given that he was
alive during the whole interval, is (A7)%e~*7 /z!. Tt follows that the probability of remaining
alive through the interval (¢,¢ + 7] and making = purchases is

()\T)xef)\‘ref,u(tqbr)

z!

(3)

ii. The individual was alive at ¢ but died at some point w (< ¢ + 7), making  purchases in the
interval (¢,w]. The probability of this occurring is
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which, noting that the integrand is an Erlang-(x + 1) pdf,
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These two scenarios also hold for the case of = 0 but need to be augmented by an additional
reason as to why no purchases could have occurred in the interval (¢,¢ + 7]: the individual was
dead at the beginning of the interval, which occurs with probability

1—eH. (5)



Combining (3)—(5) gives us the following expression for the probability of observing = purchases
in the interval (¢,¢ + 7], conditional on A and p:
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4 Removing the Conditioning on A and u

In reality, we never know an individual’s latent characteristics; we therefore remove the conditioning
on X\ and p by taking the expectation of (6) over the distributions of A and M:
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Substituting (1), (2), and (6) in (7) gives us
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Solving (9) and (10) is trivial:
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To solve (11), consider the transformation ¥ = M/(A + M) and Z = A + M. Using the
transformation technique (Casella and Berger 2002, Section 4.3, pp. 156-162; Mood et al. 1974,
Section 6.2, p. 204ff), it follows that the joint distribution of Y and Z is
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Noting that the inverse of this transformation is A = (1 — y)z and p = yz, it follows that
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which, recalling Euler’s integral for the Gaussian hypergeometric function,!
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Looking closely at (16), we see that the argument of the Gaussian hypergeometric function,
w, is guaranteed to be bounded between 0 and 1 when o > +t, thus ensuring convergence
of the series representation of the function. However, when o < 8+ ¢ we can be faced with the
situation where w < —1, in which case the series is divergent.

Applying the linear transformation (Abramowitz and Stegun 1972, equation 15.3.4)
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We note that the argument of the above Gaussian hypergeometric function is bounded between
0 and 1 when o < 8 + ¢. We therefore present (16) and (18) as solutions to (11), using (16) when
a > [+t and (18) when oo < 8+ t. We can write this as
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To solve (12), we also make use of the transformation Y = M/(A+ M) and Z = A+ M. Given
(15), it follows that
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which, recalling Euler’s integral for the Gaussian hypergeometric function,
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Noting that the argument of the Gaussian hypergeometric function is only guaranteed to be
bounded between 0 and 1 when ae > 8+t (V7 > 0), we apply the linear transformation (17), which
gives us
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The argument of the above Gaussian hypergeometric function is bounded between 0 and 1
when a < B+t (V7 > 0). We therefore present (21) and (22) as solutions to (12): we use (21)
when oo > 8+t and (22) when « < 5+ t. We can write this as
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Substituting (13), (14), (19), and (23) in (8) yields the following expression for the probability
of observing x transactions in the time interval (¢, ¢+ 7]:
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where expressions for B; and Bg are given in (20) and (24), respectively.
We note that for ¢ = 0, (25) reduces to the implied expression for P(X(7) = ) as given in
Fader and Hardie (2020, equation 16).
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