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1 Introduction

Schmittlein et al. (1987) and Fader and Hardie (2020) derive expressions for P (X(t) = x), where
the random variable X(t) denotes the number of transactions observed in the time interval (0, t],
as implied by the Pareto/NBD model assumptions. In this note, we derive the corresponding
expression for P (X(t, t + τ ) = x), where the random variable X(t, t + τ ) denotes the number of
transactions observed in the time interval (t, t + τ ].

In Section 2 we review the assumptions underlying the Pareto/NBD model. In Section 3, we
derive an expression for P (X(t, t + τ ) = x) conditional on the unobserved latent characteristics λ
and µ. This conditioning is removed in Section 4.

2 Model Assumptions

The Pareto/NBD model is based on the following assumptions:

i. Customers go through two stages in their “lifetime” with a specific firm: they are “alive” for
some period of time, then become permanently inactive (i.e., “die”).

ii. While alive, the number of transactions made by a customer follows a Poisson process with
transaction rate λ. This implies that the probability of observing x transactions in the time
interval (0, t] is given by

P (X(t) = x | λ) =
(λt)xe−λt

x!
, x = 0, 1, 2, . . . .

It also implies that, assuming the customer is alive through the time interval (ta, tb],

P (X(ta, tb) = x | λ) =
[λ(tb − ta)]xe−λ(tb−ta)

x!
, x = 0, 1, 2, . . . .

† c© 2006, 2020 Peter S. Fader, Bruce G.S. Hardie, and Kinshuk Jerath. This document can be found at
<http://brucehardie.com/notes/013/>.
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iii. A customer’s unobserved lifetime of length ω (after which he is viewed as being inactive) is
exponentially distributed with dropout rate µ:

f(ω |µ) = µe−µω .

iv. Heterogeneity in transaction rates across customers follows a gamma distribution with shape
parameter r and scale parameter α:

g(λ | r, α) =
αrλr−1e−λα

Γ(r)
. (1)

v. Heterogeneity in dropout rates across customers follows a gamma distribution with shape
parameter s and scale parameter β:

g(µ | s, β) =
βsµs−1e−µβ

Γ(s)
. (2)

vi. The transaction rate λ and the dropout rate µ vary independently across customers.

3 P (X(t, t + τ ) = x) Conditional on λ and µ

Suppose we know an individual’s unobserved latent characteristics λ and µ. For x > 0, there are
two ways x purchases could have occurred in the interval (t, t + τ ]:

i. The individual was alive at t and remained alive through the whole interval; this occurs with
probability e−µ(t+τ). The probability of the individual making x purchases, given that he was
alive during the whole interval, is (λτ )xe−λτ/x!. It follows that the probability of remaining
alive through the interval (t, t + τ ] and making x purchases is

(λτ )xe−λτe−µ(t+τ)

x!
. (3)

ii. The individual was alive at t but died at some point ω (< t + τ ), making x purchases in the
interval (t, ω]. The probability of this occurring is

∫ t+τ

t

[λ(ω − t)]xe−λ(ω−t)

x!
µe−µω dω

= e−µtλxµ

∫ t+τ

t

(ω − t)xe−(λ+µ)(ω−t)

x!
dω

= e−µtλxµ

∫ τ

0

sxe−(λ+µ)s

x!
ds

= e−µt λxµ

(λ + µ)x+1

∫ τ

0

(λ + µ)x+1sxe−(λ+µ)s

x!
ds

which, noting that the integrand is an Erlang-(x + 1) pdf,

= e−µt
( λ

λ + µ

)x( µ

λ + µ

)

[

1 − e−(λ+µ)τ
x

∑

i=0

[(λ + µ)τ ]i

i!

]

. (4)

These two scenarios also hold for the case of x = 0 but need to be augmented by an additional
reason as to why no purchases could have occurred in the interval (t, t + τ ]: the individual was
dead at the beginning of the interval, which occurs with probability

1 − e−µt . (5)
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Combining (3)–(5) gives us the following expression for the probability of observing x purchases
in the interval (t, t + τ ], conditional on λ and µ:

P (X(t, t + τ ) = x | λ, µ) = δx=0

[

1 − e−µt
]

+
(λτ )xe−λτe−µ(t+τ)

x!

+
( λ

λ + µ

)x( µ

λ + µ

)

e−µt

−
( λ

λ + µ

)x( µ

λ + µ

)

e−λτe−µ(t+τ)
x

∑

i=0

[(λ + µ)τ ]i

i!
. (6)

4 Removing the Conditioning on λ and µ

In reality, we never know an individual’s latent characteristics; we therefore remove the conditioning
on λ and µ by taking the expectation of (6) over the distributions of Λ and M :

P (X(t, t + τ ) = x | r, α, s, β)

=

∫

∞

0

∫

∞

0

P (X(t, t + τ ) = x | λ, µ)g(λ | r, α)g(µ | s, β) dλ dµ . (7)

Substituting (1), (2), and (6) in (7) gives us

P (X(t, t + τ ) = x | r, α, s, β) = δx=0A1 + A2 + A3 −

x
∑

i=0

τ i

i!
A4 (8)

where

A1 =

∫

∞

0

[

1 − e−µt
]

g(µ | s, β) dµ (9)

A2 =

∫

∞

0

∫

∞

0

(λτ )xe−λτe−µ(t+τ)

x!
g(λ | r, α)g(µ | s, β) dλ dµ (10)

A3 =

∫

∞

0

∫

∞

0

( λ

λ + µ

)x( µ

λ + µ

)

e−µtg(λ | r, α)g(µ | s, β) dλ dµ (11)

A4 =

∫

∞

0

∫

∞

0

( λ

λ + µ

)x( µ

λ + µ

)

(λ + µ)ie−λτe−µ(t+τ)g(λ | r, α)g(µ | s, β) dλ dµ (12)

Solving (9) and (10) is trivial:

A1 = 1 −
( β

β + t

)s

(13)

A2 =
Γ(r + x)

Γ(r)x!

( α

α + τ

)r( τ

α + τ

)x( β

β + t + τ

)s

(14)

To solve (11), consider the transformation Y = M/(Λ + M) and Z = Λ + M . Using the
transformation technique (Casella and Berger 2002, Section 4.3, pp. 156–162; Mood et al. 1974,
Section 6.2, p. 204ff), it follows that the joint distribution of Y and Z is

g(y, z |α, β, r, s) =
αrβs

Γ(r)Γ(s)
ys−1(1 − y)r−1zr+s−1e−z(α−(α−β)y) . (15)

Noting that the inverse of this transformation is λ = (1 − y)z and µ = yz, it follows that

A3 =

∫ 1

0

∫

∞

0

y(1 − y)xe−yztg(y, z |α, β, r, s) dz dy

=
αrβs

Γ(r)Γ(s)

∫ 1

0

∫

∞

0

ys(1 − y)r+x−1zr+s−1e−z(α−(α−(β+t))y) dz dy
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=
αrβs

Γ(r)Γ(s)

∫ 1

0

ys(1 − y)r+x−1

{
∫

∞

0

zr+s−1e−z(α−(α−(β+t))y) dz

}

dy

= αrβs Γ(r + s)

Γ(r)Γ(s)

∫ 1

0

ys(1 − y)r+x−1(α − (α − (β + t))y)−(r+s) dy

=
1

B(r, s)

αrβs

αr+s

∫ 1

0

ys(1 − y)r+x−1
[

1 −
(α−(β+t)

α

)

y
]

−(r+s)
dy

which, recalling Euler’s integral for the Gaussian hypergeometric function,1

=
αrβs

αr+s

B(r + x, s + 1)

B(r, s)
2F1

(

r + s, s + 1; r + s + x + 1; α−(β+t)
α

)

. (16)

Looking closely at (16), we see that the argument of the Gaussian hypergeometric function,
α−(β+t)

α
, is guaranteed to be bounded between 0 and 1 when α ≥ β + t, thus ensuring convergence

of the series representation of the function. However, when α < β + t we can be faced with the

situation where
α−(β+t)

α
< −1, in which case the series is divergent.

Applying the linear transformation (Abramowitz and Stegun 1972, equation 15.3.4)

2F1(a, b; c; z) = (1 − z)−a
2F1

(

a, c− b; c; z
z−1

)

, (17)

gives us

A3 =
αrβs

(β + t)r+s

B(r + x, s + 1)

B(r, s)
2F1

(

r + s, r + x; r + s + x + 1; β+t−α
β+t

)

. (18)

We note that the argument of the above Gaussian hypergeometric function is bounded between
0 and 1 when α ≤ β + t. We therefore present (16) and (18) as solutions to (11), using (16) when
α ≥ β + t and (18) when α ≤ β + t. We can write this as

A3 = αrβs B(r + x, s + 1)

B(r, s)
B1 (19)

where

B1 =



















2F1

(

r + s, s + 1; r + s + x + 1; α−(β+t)
α

)

αr+s
if α ≥ β + t

2F1

(

r + s, r + x; r + s + x + 1; β+t−α
β+t

)

(β + t)r+s
if α ≤ β + t

(20)

To solve (12), we also make use of the transformation Y = M/(Λ+M) and Z = Λ+M . Given
(15), it follows that

A4 =

∫ 1

0

∫

∞

0

y(1 − y)xzie−(1−y)zτe−yz(t+τ)g(y, z |α, β, r, s) dz dy

=
αrβs

Γ(r)Γ(s)

∫ 1

0

∫

∞

0

ys(1 − y)r+x−1zr+s+i−1e−z(α+τ−(α−(β+t))y) dz dy

=
αrβs

Γ(r)Γ(s)

∫ 1

0

ys(1 − y)r+x−1

{
∫

∞

0

zr+s+i−1e−z(α+τ−(α−(β+t))y) dz

}

dy

= αrβs Γ(r + s + i)

Γ(r)Γ(s)

∫ 1

0

ys(1 − y)r+x−1(α + τ − (α − (β + t))y)−(r+s+i) dy

=
Γ(r + s + i)

Γ(r)Γ(s)

αrβs

(α + τ )r+s+i

∫ 1

0

ys(1 − y)r+x−1
[

1 −
(α−(β+t)

α+τ

)

y
]

−(r+s+i)
dy

1
2F1(a, b; c; z) = 1

B(b,c−b)

R 1
0

tb−1(1 − t)c−b−1(1 − zt)−adt , c > b .
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which, recalling Euler’s integral for the Gaussian hypergeometric function,

=
Γ(r + s + i)

Γ(r + s)

αrβs

(α + τ )r+s+i

B(r + x, s + 1)

B(r, s)

× 2F1

(

r + s + i, s + 1; r + s + x + 1; α−(β+t)
α+τ

)

. (21)

Noting that the argument of the Gaussian hypergeometric function is only guaranteed to be
bounded between 0 and 1 when α ≥ β+ t (∀ τ > 0), we apply the linear transformation (17), which
gives us

A4 =
Γ(r + s + i)

Γ(r + s)

αrβs

(β + t + τ )r+s+i

B(r + x, s + 1)

B(r, s)

× 2F1

(

r + s + i, r + x; r + s + x + 1; β+t−α
β+t+τ

)

, (22)

The argument of the above Gaussian hypergeometric function is bounded between 0 and 1
when α ≤ β + t (∀ τ > 0). We therefore present (21) and (22) as solutions to (12): we use (21)
when α ≥ β + t and (22) when α ≤ β + t. We can write this as

A4 = αrβs Γ(r + s + i)

Γ(r + s)

B(r + x, s + 1)

B(r, s)
B2 (23)

where

B2 =























2F1

(

r + s + i, s + 1; r + s + x + 1; α−(β+t)
α+τ

)

(α + τ )r+s+i
if α ≥ β + t

2F1

(

r + s + i, r + x; r + s + x + 1; β+t−α
β+t+τ

)

(β + t + τ )r+s+i
if α ≤ β + t

(24)

Substituting (13), (14), (19), and (23) in (8) yields the following expression for the probability
of observing x transactions in the time interval (t, t + τ ]:

P (X(t, t + τ ) = x | r, α, s, β)

= δx=0

[

1 −
( β

β + t

)s
]

+
Γ(r + x)

Γ(r)x!

( α

α + τ

)r( τ

α + τ

)x( β

β + t + τ

)s

+ αrβs B(r + x, s + 1)

B(r, s)

{

B1 −

x
∑

i=0

Γ(r + s + i)

Γ(r + s)

τ i

i!
B2

}

(25)

where expressions for B1 and B2 are given in (20) and (24), respectively.
We note that for t = 0, (25) reduces to the implied expression for P (X(τ ) = x) as given in

Fader and Hardie (2020, equation 16).
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