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1 Introduction

This note presents a detailed derivation of the gamma-gamma “spend”
model presented in Fader et al. (2005), along with details of how to estimate

the model parameters and use them to predict likely spend per transaction
in the future at the customer level.

Our model of spend per transaction is based on the following three gen-

eral assumptions:

• The monetary value (e.g., $, £, e) of a customer’s given transaction
varies randomly around their average transaction value.

• Average transaction values vary across customers but do not vary over
time for any given individual.

• The distribution of average transaction values across customers is in-

dependent of the transaction process.

For a customer with x transactions, let z1, z2, . . . , zx denote the value of

each transaction. The customer’s observed average transaction value by

z̄ =

x
∑

i=1

zi/x .

z̄ is an imperfect estimate of their (unobserved) mean transaction value

ζ. Our goal is to make inferences about ζ given z̄, which we denote as
E(Z | z̄, x). As a first step, we need to derive the distribution of z̄ given x
transactions.

† c© 2013 Peter S. Fader and Bruce G. S. Hardie. This document and the associated
spreadsheet can be found at <http://brucehardie.com/notes/025/>.
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2 Model Development

Schmittlein and Peterson (1994) proposed that the zi be distributed normal.

Two problems with this choice of distribution are that i) it is not bounded
from below by 0, and ii) it results in a symmetric spend distribution. Since

spend data tend to be right skewed, we follow Colombo and Jiang (1999)
and use the gamma distribution. More formally,

i) we assume that zi ∼ gamma(p, ν), with E(Zi | p, ν) = ζ = p/ν.

– given the convolution properties of the gamma, it follows that

total spend across x transactions is distributed gamma(px, ν).

– given the scaling property of the gamma distribution, it follows
that z̄ ∼ gamma(px, νx).

ii) we assume ν ∼ gamma(q, γ).

This results in what we call the gamma-gamma (GG) model of monetary

value (or spend per transaction), which is also known as the beta of the
second kind (B2).

Deriving f(z̄ | x)

Given these assumptions, the distribution of z̄ given x is

f(z̄ | p, q, γ;x) =

∫ ∞

0

(νx)pxz̄px−1e−νxz̄

Γ(px)

γqνq−1e−γν

Γ(q)
dν

=
z̄px−1xpxγq

Γ(px)Γ(q)

∫ ∞

0
νpx+q−1e−(γ+xz̄)νdν

=
Γ(px + q)

Γ(px)Γ(q)

z̄px−1xpxγq

(γ + xz̄)px+q
(1a)

=
1

z̄B(px, q)

(

γ

γ + xz̄

)q (

xz̄

γ + xz̄

)px

. (1b)

Deriving f(ζ)

We denote a customer’s (unobserved) mean transaction value by ζ. Con-
ditional on p and ν, ζ = p/ν. However, since ν varies across customers

according to a gamma(q, γ) distribution, we view the (unobserved) mean
transaction value as a random variable Z with realization ζ. We derive its

distribution using the change of variables method. For ζ = h(ν), we have

fζ(ζ) =

∣

∣

∣

∣

d

dζ
h−1(ζ)

∣

∣

∣

∣

fν(h−1(ζ)) ;
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ζ = p/ν ⇒ ν = p/ζ which in turn implies dν/dζ = −p/ζ2. Therefore,

f(ζ | p, q, γ) =
p

ζ2

γq
(p

ζ

)q−1
e
−γ p

ζ

Γ(q)

=
(pγ)qζ−q−1e

−pγ
ζ

Γ(q)
, (2)

which is an inverse-gamma distribution with shape parameter q and scale

parameter pγ. The mean and variance of this distribution are

E(Z | p, q, γ) =
pγ

q − 1
, and (3)

var(Z | p, q, γ) =
p2γ2

(q − 1)2(q − 2)
. (4)

Deriving E(Z | z̄, x)

Finally, we wish to make inferences about an individual customer’s ζ given

z̄, which we denote as E(Z | z̄, x). By Bayes’ theorem,

g(ν | p, q, γ; z̄, x) =
f(z̄ | p, ν; x)g(ν | q, γ)

f(z̄ | p, q, γ;x)

=
(νx)pxz̄px−1e−νxz̄

Γ(px)

γqνq−1e−γν

Γ(q)

/

Γ(px + q)

Γ(px)Γ(q)

z̄px−1xpxγq

(γ + xz̄)px+q

=
(γ + xz̄)px+qνpx+q−1e−ν(γ+xz̄)

Γ(px + q)
.

In other words, the posterior distribution of ν is gamma with shape param-

eter px + q and scale parameter γ + xz̄. It follows that

E(Z | p, q, γ; z̄, x) =
p(γ + xz̄)

px + q − 1

=

(

q − 1

px + q − 1

)

pγ

q − 1
+

(

px

px + q − 1

)

z̄ . (5)

We call this the conditional expectation of Z. We note that this is the

weighted average of the population mean, E(Z), and the observed average
transaction value, z̄. As the number of observations (x) used to compute z̄

increases, less weight is placed on the population mean and more weight is
placed on the customer’s observed average.

3 Empirical Analysis

We now repeat the analysis of the CDNOW data presented in Fader et al.

(2005). We assume that an RFM summary of the data has been created —
see Fader and Hardie (2008)—and that it is contained in a worksheet titled

RFM summary in the Excel workbook gamma-gamma calibration.xlsx.
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Summarizing the Data

Of the 2357 individuals in the dataset, 946 made at least one repeat purchase
in the calibration period. We compute the average spend per transaction

(i.e., z̄) for each of the 946 individuals and report the basic descriptive
statistics in Table 1. We note that the distribution of observed individual

means is highly skewed to the right.

$

Minimum 2.99
25th percentile 15.75
Median 27.50

75th percentile 41.80
Maximum 299.63

Mean 35.08

Std. deviation 30.28
Mode 14.96

Table 1: Summary of average transaction value per customer.

The nonparametric density plot of the observed individual means given

in Figure 1 is created in MATLAB using the following commands:

$0 $50 $100 $150 $200 $250 $300
0

0.01

0.02

0.03

0.04

Average transaction value (z̄)

f(z̄)

Figure 1: Observed distribution of average transaction values
across customers.
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i) We read the data into MATLAB,

RFM = xlsread(’d:\gamma-gamma_calibration’,’RFM summary’);

and extract the “frequency” and “monetary value” data (x and z̄)

for those individuals who made a repeat purchase in the calibration
period:

use = find(RFM(:,2)>0);

x = RFM(use,2);

zbar = RFM(use,5);

ii) We create the probability density estimate of the sample,

m = cumsum(2.5*ones(1,120));

f = ksdensity(zbar,m,’support’,’positive’);

and the associated plot:

plot(m,f,’k-’);

xlabel(’Average transaction value ($\bar{z}$)’,’Interpreter’,’LaTeX’);

ylabel(’$f(\bar{z})\qquad $’,’Interpreter’,’LaTeX’,’rot’,0);

axis([0,300,0,.04]);

set(gca,’XTick’,[0 50 100 150 200 250 300]);

set(gca,’XTickLabel’,{’$0’,’$50’,’$100’,’$150’,’$200’,’$250’,’$300’});

set(gca,’YTick’,[0 0.01 0.02 0.03 0.04]);

set(gca,’YTickLabel’,{’0’,’0.01’,’0.02’,’0.03’,’0.04’});

Parameter Estimation

Given the frequency (xi) and monetary value (z̄i) data for each individual
(i = 1, . . . , I), the sample log-likelihood function is simply

LL(p, q, γ | data) =
I

∑

i=1

ln
[

f(z̄i | p, q, γ;xi)
]

, (6)

the maximum of which can be found using standard numerical optimization
methods.

It is a simple exercise to “code up” (6) in Excel. To illustrate this,
consider the worksheet Calibration - zbar:

• We first note that this worksheet contains a copy of the data pre-
sented in the worksheet RFM summary, and that the records associated

with those customers who made no repeat purchases in the calibration
period (i.e., xi = 0) have not been deleted.
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• Given the parameter values located in cells B1:B3, and the data in
cells B7:C7, we compute in cell D7 the log of f(z̄ | p, q, γ;x) using the

expression given in (1a). (For those customers who made no repeat
purchases in the calibration period, we return the value of 0.) This is

copied down to the end of the dataset, row 2363.

• The sum of cells D7:D2363 is located in cell B4 and is the value of the
log-likelihood function for the parameter values located in cells B1:B3.

We use the Excel Solver add-in to find the values of p, q, and γ (cells
B1:B3) that maximize the value of the log-likelihood function (cell B4), sub-

ject to the constraint that cells B1:B3 are ≥ a small positive number (e.g.,
0.0001). We find that the maximum likelihood estimates of the model pa-

rameters are p̂ = 6.25, q̂ = 3.74, and γ̂ = 15.44.

Estimated Distribution of Average Spend per Transaction

Given the parameter estimates and (2), we can plot the distribution of the

(unobserved) mean transaction value ζ across individuals— see the work-
sheet f(zeta) and Figure 2.

$0 $50 $100 $150 $200 $250 $300
0

0.01

0.02

0.03

0.04

Unobserved mean transaction value (ζ)

f(ζ)

Figure 2: Distribution of the (unobserved) mean transaction

value (ζ).

While knowledge of this distribution of the underlying mean spend per

transaction is interesting, Figure 2 cannot be be compared to Figure 1 so as
to get a sense of how well the model fits the data. Figure 1 is the distribution
of average spend per (repeat) transaction across the 946 individuals who
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made a repeat transaction in the calibration period. Each customer’s average
is computed across a (typically very) small number of transactions. Figure 2,

on the other hand, is effectively the distribution where the means have been
computed across x → ∞ transactions.

In order to get a sense of how well the model fits the data, we need to
compare the model-based distribution of z̄ with the empirical distribution

(Figure 1). Since the distribution of z̄ is conditional on x, we compute a
weighted average of (1),

max(x)
∑

x=1

f(z̄ | p, q, γ;x)fx/I ,

where, for a sample of size I , fx is the number of customers who made x
repeat transactions in the model calibration period.

We first determine the distribution of repeat transactions in the cali-
bration period (Pivot Table) and copy the data into cells D1:Y2 of the

worksheet f(zbar). In column D we compute f(z̄), z̄ = 1, 2, . . . , 300 for the
case of x = 1. We copy this across to column Y to evaluate this function for
all observed values of x.1 For each value of z̄, we compute in column B the

weighted average of the f(z̄ | x) contained in columns D-Y.
We compare in Figure 3 this model-based distribution of z̄ with the

distribution of the (observed) average spend per transaction (as contained
in Figure 1). As Fader et al. (2005, p. 421) note, “[t]he fit is reasonable.

However, the theoretical mode of $19 is greater than the observed mode of
$15, which corresponds to the typical price of a CD at the time the data were

collected. The model is not designed to recognize the existence of threshold
price points (e.g., prices ending in .99), so this mismatch is not surprising.”

This plot is created in MATLAB using the following code. We first create
the predicted distribution,

% *** compute the density of average transaction value ***

p=6.25;

q=3.74;

gam=15.44;

% how many people with each level of x?

nx = [];

for i=1:max(x),

nx(i)=length(find(x==i));

end

1Note that while we use (1a) for model calibration (Calibration - zbar), we use (1b)
for this calculation. When evaluating (1a) for large values of z̄ and x, the result exceeds
the largest allowed positive number; this is not a problem when using (1b) as the base
of the exponentiation is less than one. We can use (1a) for model calibration as we are
evaluating its logarithm.
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$0 $50 $100 $150 $200 $250 $300
0

0.01

0.02

0.03

0.04

Average transaction value (z̄)

f(z̄)

 

 

Actual (nonparametric density)
Model (weighted by actual x)

Figure 3: Observed versus theoretical distribution of average

transaction value across customers.

% compute the density of zbar for each x

y = cumsum(ones(1,300))’;

for i=1:max(x),

a1 = gammaln(p*i+q)-gammaln(p*i)-gammaln(q);

a2 = q*log(gam);

a3 = (p*i-1)*log(y);

a4 = (p*i)*log(i);

a5 = (p*i+q)*log(gam+y*i);

g1(:,i) = exp(a1+a2+a3+a4-a5);

end

% compute the weighted average

g = nx*g1’./sum(nx);

and then overlay the two plots:

hold on

plot(m,f,’k-’);

plot(y,g,’k-.’);

legend(’Actual (nonparametric density)’,’Model (weighted by actual x)’);

hold off

xlabel(’Average transaction value ($\bar{z}$)’,’Interpreter’,’LaTeX’);

ylabel(’$f(\bar{z})\qquad $’,’Interpreter’,’LaTeX’,’rot’,0);

axis([0,300,0,.04]);

set(gca,’XTick’,[0 50 100 150 200 250 300]);

set(gca,’XTickLabel’,{’$0’,’$50’,’$100’,’$150’,’$200’,’$250’,’$300’});

set(gca,’YTick’,[0 0.01 0.02 0.03 0.04]);

set(gca,’YTickLabel’,{’0’,’0.01’,’0.02’,’0.03’,’0.04’});
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Computing Conditional Expectations

Our primary reason for utilizing a model of monetary value is to enable us
to make inferences about a customer’s (unobserved) mean transaction value

ζ given z̄, which we denote as E(Z | z̄, x). As noted in our comment on (5),
this can be written as a weighted average of the population mean, E(Z),

and the observed average transaction value, z̄.
We compute this conditional expectation in the worksheet Conditional

expectation by first computing the weight (cells D6:D2362) placed on the
population mean (cell D1). Given this weight, the conditional expectation
is computed in column E.
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