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1 Introduction

Many MBA-level introductory marketing courses now cover the concept of
customer lifetime value (CLV), including a case or exercise in which stu-
dents are expected to perform some simple CLV calculations. As discussed
in Fader and Hardie (2014b), there are a number of problems with these in-
troductory examinations of the topic, which means they are of limited value
to anyone actually interested in computing CLV in practice.! But beyond
the basic calculation of CLV —and the validity of the methods used to do
so— these initial classroom explorations generally fall short in other ways.
In this note we introduce a number of ideas that have been ignored in stan-
dard discussions of CLV, namely the distribution of CLV and quantifying
the uncertainty about the value and future size of a group of customers.

2 Motivating Problem —Part 1

Consider a company with a subscription-based business model that acquires
1000 customers (on annual contracts) at the beginning of Year 1. Table 1
reports the pattern of renewals by this cohort over the subsequent four years.
(A cohort is a group of customers acquired at the same time.)

Let us suppose the average net cash flow per customer is $100/year,
which is booked at the beginning of the contract period. Let us also assume
a discount rate of 10% to reflect the time value of money.

T© 2017 Peter S. Fader and Bruce G.S. Hardie. This document and the associated
Excel workbook can be found at <http://brucehardie.com/notes/035/>.
!See Bendle and Bagga (2017) for an additional critique of such introductory material.



ID Year1 Year 2 Year3 Year4 Year5b

0001 1 1 0 0 0
0002 1 0 0 0 0
0003 1 1 1 0 0
0004 1 1 0 0 0
0005 1 1 1 1 1
0998 1 0 0 0 0
0999 1 1 1 0 0
1000 1 0 0 0 0

1000 631 468 382 326

Table 1: Pattern of year-on-year renewals for the cohort of 1000 cus-
tomers acquired at the beginning of Year 1.

Consider the following question:

Assuming our current prospect pool has the same characteris-
tics as that from which these customers were acquired, what is
the expected value of a new customer (ignoring any customer
acquisition costs)?

According to these data, the probability of a customer renewing at the
end of the first year (and therefore being a customer in the second year) is
631/1000 = 0.631. The probability that a randomly chosen member of the
cohort of 1000 customers is still a customer in the third year is 468/1000 =
0.468. And so on. Therefore, standing at the beginning of Year 1, the
(discounted) expected value of a customer can initially be calculated as

0.631 0.468 0.382 0.326

1 1 100 X ——
11 —|—$00><(1'1)2—|—$00><(1'1)3—|—$ x(1‘1)4,

$100 + $100 x

which equals $247.01.

Let us consider an alternative way of performing this calculation. We
first note from Table 1 that 369 individuals are customers for just one year,
163 for just two years, 86 for just three years, and 56 for just four years. A
total of 326 make their fourth renewal and are therefore customers for five
years.

e Anyone who stays with the firm for just one year is worth $100.
e Anyone who stays with the firm for just two years is worth

1
$100 + % = $190.91.



e Anyone who stays with the firm for just three years is worth

$100  $100
100 + 2 + " = §273.55.
$100 + —— )2 $273.55

e Anyone who stays with the firm for just four years is worth

$100 $100 $100
1 = $348.69.
S0+ S+ e s

e Anyone who is a customer for five years is worth

$100  $100  $100  $100
5100 + %—(11)2%—(11)3%—(11)4——$41699

Therefore, standing at the beginning of Year 1, the expected discounted
value of an as-yet-to-be-acquired customer is

369 163 86
100.00 x 22 4 §190.91 x — + $273.55 x —
$100.00x 7555 9 % Tooo T ¥ " 1000
56 326
4869 x 0 1 $416.99 x 220 _ $947.01.
+ $348.69 x 1o + $416.99 x L = $247.0

The problem with this answer (whichever way it is computed) is that it
ignores any cash flow the customer might generate after Year 5. Who says
their maximum “lifetime” as a customer is limited to five years? We would
expect that some of the 32.6% of customers who survive to Year 5 survive
into Year 6 and are therefore worth more than the $416.99 associated with
their still being a customer in Year 5. To get a true sense of (expected)
customer lifetime value, we need to know the probability that the customer
is still alive in Year 6, Year 7, and so on.

Let us step back and introduce some notation and terminology. More
formally, the survivor function S(¢) is the probability that a randomly chosen
member of the original cohort of customers survives beyond time ¢. With
reference to Figure 1, a customer is “born” at ¢t = 0 (the beginning of Year 1)
and therefore, by definition, S(0) = 1. The empirical survivor function (i.e.,
the survivor function computed directly from the data) for this cohort is
S(1) =0.631, S(2) = 0.468, S(3) = 0.382 and S(4) = 0.326.

Year 1 Year 2 Year 3 Year 4 Year 5

=% 1000 ‘7' 631 T 468 382

326

Figure 1: Summary of the cohort’s subscription’s renewal behavior.

We also note that the proportion of Year 1 customers who are customers
in Year 2 is 631/1000 = 0.631. Similarly, the proportion of Year 2 customers



who are customers in Year 3 is 468/631 = 0.742. This is captured by
the notion of the retention rate, denoted by r(t), which is the proportion
of customers who survived beyond ¢ — 1 who also survive beyond t. The
empirical retention rates for this cohort are r(1) = 0.631, r(2) = 0.742,
r(3) = 0.816 and r(4) = 0.853. Retention rates can be computed directly
from the data (as above) or via the survivor function using the following
formula:
S(t)
r(t) = SE-1 t=1,2,3,...

Equivalently, given knowledge of the retention rates, we can compute

the survivor function using the following forward recursion:

1 ift=20
S(t) = {r(t) xS(t—1) ift=1,2,3,... .

Using this notation, our initial expected discounted value of a customer
calculation performed above can be written as

1L S()
$100 x ; i

If we wish to determine the expected lifetime value of a customer, we need
to compute

S()

E(CLV) = $100 x f: T (2)

t=0
The challenge is how to compute S(5), the probability the customer is still
with the firm in year 6, S(6), the probability the customer is still with the
firm in year 7, and so on.

A simple solution is to use the beta-geometric (BG) distribution to
project customer retention and survival into the future—see Fader and
Hardie (2007, 2014a) for details. Of particular interest is the following ex-
pression for the retention rate,

d+t—1
r(t|7,5)—m,t—l,2,3,..., (3)
where v and § are the two parameters of this distribution.

Fitting the BG model to the summary data given in Figure 1, Fader
and Hardie (2014a) arrive at the following parameter estimates: 4 = 0.760
and 6 = 1.286. Given these parameter estimates, we can use (1) and (3)
to compute S(¢) as far into the future as desired. We can then compute
E(CLV) using (2).

For practical purposes, we treat a 200-year time horizon as being effec-
tively equivalent to infinity. The Excel worksheet we use to do perform these



calculations is shown in Figure 2.2 We note that our estimate of the value
of a new customer increases by $115 to $362 (ignoring cents for now).

| A | B8 | ¢ | o | e | f | &

| 1 |[gamma 0.760 E(CLV) $362.21

2 |delta 1.286 " —
514 o1 | =B4*SUMPRODUCT(D7:D206,F7:F206)
[ 4 |NetcF $100
5
| 6| Year t r{t) S(t) disc.
7] 1 0 1.0000 1.0000

8 2 1 _ 06285 06285 0.9091
T 3 / NICAC N AT1T 0.8264
o] 4| =($BS2+B8-1)/($BS1+3BS2+B8-1) |
=1 - A
11| 5 4 08494 03254 1/(1+5853)"88
[12] 6 5 08743 02845 0.6209
[13] 7 6 08921 02538 0.5645
14 8 7 09055 02298 05132

15 9 8 09160 0210 0.4665
—- = *,
(16 10 9 09243 0194 0171 | o450
[17] 11 10 09312 0.812 0.3855
204 ~ 198 197 09962 0.0204 0.0000
205 199 198 0992  0.0203 0.0000
2060 200 199 09962  0.0202 0.0000

Figure 2: Screenshot of the worksheet Calculating E(CLV).

3 Moving Beyond a Point Estimate

Let us think about our estimate of customer lifetime value. We say that
we would expect a customer to be worth $362. However, if we reflect on
the alternative initial calculation performed above, no single customer will
actually be worth that specific amount. We would expect approximately
37% of the acquired customers to remain with us for just one year and
therefore each be worth $100, approximately 16% of the acquired customers
to remain with us for just two years and therefore each be worth $190.91,
and so on. Our F(CLV) number is an average across a group of acquired
customers but need not be true for any individual customer. Let us therefore
consider the distribution of customer lifetime value.

With reference to the worksheet Distribution of CLV (I) (Figure 3),
we compute the distribution in the following manner.

e Sticking with the 200-year time horizon used above, an individual’s
“lifetime” ranges from one year to 200 years (column F). (We will
reconsider this arguably unrealistic assumption in Section 7.)

e For each possible lifetime, we compute the lifetime value of a customer
with that lifetime (column G) and the probability that a randomly

2This worksheet is part of the workbook distribution_of CLV__contractual.xlsx.



chosen member of the cohort has a lifetime of that length (column H).?

| A~ [ 8 | ¢ [ o | e | F ] 6 | w T 1

| 1 |[gamma 0.760
| 2 |delta 1.286
[ 3 ]d 0.1
| 4 |NetCF $100
| 5 |
| 6 | t r(t) S(t) disc. Lifetime CLV P{Lifetime)
| 7 | 0 1.0000 1.0000 1 100.00 0.3715
| 8 | 1 0.6285 0.6285 0.9091 2 190.91 0.1568
| 9| 2 0.7505 0.4717 0.8264 A 273.55 0.08
| 10| 3 0.8122 03831 0.7513 348.69 0.05
| 11| 4 08494 0.3254 0.6830 5 416.99 0.0409
|12 | 5 0.8743  0.2845 0.6209 6  479.08 0.0307
113 6 0.8921 0.2538  0.5645 7 535.53 0.0240
| 14 | 7 09055 0.2298 0.5132 8 586.84 0.0193
1 15| 8 09160 0.2105 0.4665 9 633.49 0.0159
|16 | 9 09243 0.1946 0.4241 10  675.90 0.0134

17 100 09312 0.1812  0.3855 11 714.46 0.0114
(133 ~ " 126 05940 0.0285 00000 127 1099.99 00002 |
|134] 127 09941 0.0284  0.0000 128 1099.99 0.0002
1135 128  0.9941 0.0282  0.0000 129 1099.99 0.0002
1136] 129 09942 0.0280 0.0000 130 1100.00 0.0002
1137] 130 09942 0.0279 0.0000 131 1100.00 0.0002
1138] 131 09942 0.0277 0.0000 132 1100.00 0.0002

139 132 09943 0.0275 0.0000 133 1100.00 0.0002
203 T 196 08961 0.0204 00000 197 110000 00001 |
1204] 197 09962 0.0204 0.0000 198 1100.00 0.0001
1205 198 09962 0.0203 0.0000 199 1100.00 0.0001

206 199 09962 0.0202  0.0000 200 1100.00

Figure 3: Screenshot of the worksheet Distribution of CLV (I).

We note that beyond a certain point in time, the customer’s lifetime
value appears to be the same ($1100), regardless of how long they remain a
customer. Recall from high school algebra that, for 0 < k < 1, the infinite
geometric series Y 7 ak™ has the solution a/(1 — k). Letting a = $100
and k = 1/1.1, it follows that the present value of the income stream of a
customer who lives forever is

$100

— = $1100.
l—13
The value of a customer who remains with the firm for 200 years is less than
1/1,000th of a cent below this limit.

The final steps in computing the distribution of CLV are undertaken

in the worksheet Distribution of CLV (II). We first make a copy of

3Quiz: =SUMPRODUCT (G7 : G205 ,H7 :H205) equals $339.97, which is less than our estimate
of E(CLV) computed above. Why is this the case? We are ignoring the approximately
2% of customers who the model predicts will remain with the firm for 200+ years, each
of whom has a present value of $1100. This is corrected below. As already noted, the
question of the time horizon used in our calculations is considered in Section 7.



Distribution of CLV (I), round the CLV associated with each lifetime
to the nearest dollar (column I) and then create a pivot table that gives
us the probability of seeing each value of CLV. Note that the sum of these
probabilities is less than 1.0 (cell L66); this is because we are truncating
the lifetime distribution at 200 years. However, we know that $1100 is the
highest possible CLV and so the probability of seeing a CLV of $1100 is
simply one minus the probability of seeing a value less than this—see cell
065. The corresponding distribution of CLV is plotted in Figure 4.
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Figure 4: Estimated distribution of CLV

The mean of this distribution is $362.28 and the associated variance is
$105,654.45; see cells 03 and 04 in the worksheet Distribution of CLV
(II). Note that the mean is seven cents higher than our previous estimate.
This difference can be attributed to the fact that we have rounded the CLV
numbers to the nearest dollar. We repeat this analysis in the worksheet
Distribution of CLV (III), this time rounding the CLV numbers to the
nearest cent. The mean of the resulting distribution of CLV is $362.21.

4 Uncertainty About a New Cohort
Let us consider the following questions:

We acquire 1000 customers from our current prospect pool, which
is assumed to have the same characteristics as that from which
the customers whose behavior is documented in Table 1 were
acquired.

i) What is the distribution of the total present value of these
customers? What is the probability that it is between
$350,000 and $370,0007



ii) What is the distribution of the number of individuals who
remain customers of the firm for more than three years?
What is the probability that it has 370 or fewer surviving
customers?

Let us denote the value of a new cohort of 1000 customers by CoV (cohort
value). The expected value of this cohort is obviously 1000 x $362.28 =
$362, 280. But what is the distribution around this mean?

e What is the lowest possible value of this group of customers? The
answer is 1000 x $100 = $100, 000, which occurs when each and ev-
ery new customer only survives for one year. The probability of this
occurring is extremely small: (0.371)19%0 = 2.37 x 10743%,

e What is the highest possible value of this group of customers? The
answer is 1000 x $1,100 = $1,100, 000, which would be realized if
everyone remains a customer for a very (and unrealistically) long
time. The probability of this occurring is even smaller: (0.040)1000 =
1.15 x 107139,

We compute the distribution of CoV between these limits using simu-
lation. For 1000 simulated customers, we determine their individual CLVs
and sum up the values to arrive at our estimate of CoV. We repeat this 1000
times (i.e., simulate the value of 1000 different cohorts, each containing 1000
simulated customers) and use these 1000 simulated values of CoV to create
our distribution.*

The first step is to work out how to simulate the CLV of an individual
customer. We will do so using the inverse transform method, also known as
the inverse CDF method.

e With reference to the worksheet Distribution of CoV (I), the first
thing we do is copy across the estimated distribution of CLV (cells
A1:B60). We can now compute the cumulative distribution function
(CDF) of CLV. With reference to cells C2:C60, the probability that
CLV is < $100 is 0.371, the probability that CLV is < $191 is 0.528,
the probability that CLV is < $274 is 0.617, and so on.

e The inverse sampling method sees us simulating CLV by drawing a
uniform random number (using the =RAND function in Excel). If the
value of this draw is between 0 and 0.371, we say that the individual’s
CLV is $100. If the value of this draw is between 0.371 and 0.528,

4We could do this using the @RISK software, which performs Monte Carlo simulation
in Excel, defining a discrete distribution (RiskDiscrete() using the discrete distribu-
tion created in Distribution of CLV (II). For a problem such as this, we feel that the
approach outlined here is actually simpler.



we say that the individual’s CLV is $191. If the value of this draw
is between 0.528 and 0.617, we say that the individual’s CLV is $274.
And so on. (What if the value of the draw is 0.7207 We would say
that the individual’s CLV is $479.)

The next step is to simulate the CLVs for 1000 simulated customers, for
each of the 1000 simulated cohorts. We do this in cells F6: ALQ1005, making
use of the =LO0KUP Excel function to perform the lookup associated with
the inverse sampling method. The resulting simulated CoV numbers are
given in cells F3:ALQ3. We compute the resulting distribution of RCoV in
the following manner.

e We copy the simulated CoV numbers into the worksheet Distribution
of CoV (II).Note thatthe numbers are not the same as those given in
Distribution of CoV (I) because new random numbers are drawn
(and we therefore have new simulated CoV numbers) whenever Excel
recalculates the workbook.

e We use the Histogram tool in the Excel Analysis ToolPak to determine
the number of draws that fall into the ten $5,000-wide bins between
$325,000 and $400,000, and plot the resulting distribution in Figure 5.

e We note that the average of these 1000 draws is $362,278, which is
very close to the expected value of $362,280 computed above. The
sample variance is $105,759,002, which implies the standard deviation
is $10,284.

25%
20% A
15% A
10% A

5% A

O% or |'_'|'_|||_||H| T
330 350

Cohort Value ($000)

i

370 390

Figure 5: Simulated distribution of the value of a new cohort (CoV)

Looking at Figure 5, we see that the distribution of cohort value looks
almost bell-shaped, suggesting it could be characterized by the normal dis-
tribution, even though the distribution of individual-level CLV (Figure 4) is



most definitely not bell-shaped . Indeed, we can demonstrate this equiva-
lence more formally.

e Recall that E(CLV) = $362.28 and var(CLV) = $105,654.45.

e As we computed above, the expected value of the group of 1000 new
customers is E(CoV) = $362,280.

e Assuming independence across customers (i.e., an individual’s deci-
sion to cancel their contract is independent of whether or not other
customers have done so), we know from introductory statistics that
var(CoV') = 1000 x var(CLV') = $105,654,450, which implies the stan-
dard deviation is $10,279.

e [t follows from the Central Limit Theorem that the distribution of CoV
is approximately normal with mean $362,280 and standard deviation

$10,279.
e We overlay this distribution on the simulated distribution of CoV in
Figure 6.
25% 1 - 0.05
20% - ] - 0.04
15% A X‘ - 0.03 ~
Q
o
10% A F0.02 <
5% - F0.01
O% =T T T T T T T T T T T T T T T 1- OOO
330 350 370 390

Cohort Value ($000)

Figure 6: Comparing the simulated versus normal approximation of the
distribution of the value of a new cohort (CoV)

Given the distribution of CoV (be it the simulated or normal approxima-
tion), we can now compute the probability that the value of the new cohort
lies between $350,000 and $370,000.

e 662 of the 1,000 simulated values of total cohort value fall in this
interval, which would gives us a probability of 0.662.
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e Considering the normal approximation, the z-score associated with
$350,000 is (350,000 — 362,280)/10,279 = —1.195 while the z-score
associated with $370,000 is (370,000 — 362,280)/10,279 = 0.751. This
implies the probability that the new cohort value falls in this interval
is 0.658. This is computed in Excel as

=NORM.S.DIST(0.751,TRUE)-NORM.S.DIST(-1.195,TRUE)

Turning to the second question, let the random variable X be the num-
bers of customers who remain customers of the firm for more than three
years. The (model-based) probability that a newly acquired customer re-
mains with the firm for more than three years is S(3) = 0.383. The distri-
bution of the number of customers (out of the original 1000) who are still
around after three years is therefore binomial with n = 1000, p = 0.383. The
mean and standard deviation of the binomial distribution are np (= 383) and

np(l — p) (=15.372), respectively.

For such a large n, it is usually easier to perform the calculations of
interest using the normal approximation of binomial distribution. Following
the Central Limit Theorem, we could simply assume that X is normally
distributed with mean and standard deviation as given above. A more ac-
curate approximation is the so-called normal approximation with continuity
correction:®

P(X<z)~® (M)
np(l — p)

where ® is the the standard normal CDF (i.e., P(Z < z) for normally dis-
tributed variable Z with mean 0 and variance 1), which can be computed in
Excel using the formula =NORM.S.DIST(z,TRUE). (See the worksheet Dist.
of Number of Survivors.) This distribution is plotted in Figure 7. (We
have to go to the fourth decimal place to find a difference between the num-
ber obtained using the normal approximation and the true value computed
using the binomial distribution.) The probability that the firm has 370 or
fewer remaining customers after three years is 0.208.

5 Motivating Problem — Part 2

Consider the following question:

We note that 326 of the original cohort of 1000 customers are
still with the firm in Year 5. What is the expected residual value
of this group of customers at the end of Year 57

®Even more accurate approximations exist; see, for example, Lesch and Jeske (2009).

11



0.03 -

g

*g 0.02 A

@)

3

g

S 0.01 4

=}

&

] | H\ |

0.00 - =||I|||I||!|||| ! ! } ||||||||!|III||...I

340 350 360 370 380 390 400 410 420 430

Number of Customers

Figure 7: Distribution of the numbers of customers surviving beyond
three years.

Let us first consider the task of computing the expected residual (i.e.,
remaining) lifetime value of an individual chosen at random from this group
of 326 Year 5 customers.

e If they renew their contract, they will be worth $100. If we assume
that a dollar received tomorrow is worth a dollar today, the discount
factor is 1. The probability that they are customer in Year 6 is the
simply the probability that they renew at the end of Year 5, r(5).

e If they renew their contract at the beginning of Year 7, the present
value (at the end of Year 5) of $100 received is 100/1.1. The probability
that they are customer in Year 7 is the simply the probability that a
Year 5 customer renews at the end of Year 5, r(5), multiplied by the
probability that a Year 6 customer renews at the end of Year 6, r(6).

e And so on.

More generally, the probability that one of the original 1000 customers
who is still with the firm in Year 5 (i.e., an individual who has renewed 4
times), survives beyond ¢ (i.e., is still a customer in Year ¢ 4 1) is 7(5) x
7(6) x - -+ x r(t). Denoting this quantity by S(t|7 > 4), we have

ST >4) =r(5) x 7(6) x - x (%)

=5
t 4

= Hr(i)/Hr(z)
=1 =1



= S5(t)/5(4)

This is called the conditional survivor function.
It follows that we can compute the expected residual lifetime value of a
randomly chosen Year 5 customer by evaluating

St|T > 4)
e <4>

[e.e]

E(RLV) =$100 x )

t=5

As before, we treat a 200-year time horizon as infinity. We perform

this calculation in the worksheet Calculating E(RLV) —see Figure 8. Our

estimate of E(RLV) is $569.51.6 This implies that, standing at the end

of Year 5, the expected residual value of this group of customers is 326
x$569.51 = $185,660.

| A [ B8 | ¢ | o | e | | ¢

| 1 |gamma 0.760 E(RLV) $569.51

2 |delta 1.286 \
3 [d 01 | =B4*SUMPRODUCT(E12:E211,F12:F211) |
[ 4 |NetcF $100
B
| 6| Year t r{t) S(t|T>4) disc.

7 1 0
| 8| 2 1 06285
Ea 3 2 07505
[ 10] 4 3 08122
11 ] 5 4 08494
[12] 6 5 08743 08743 1.0000

13 7 6 08921 07800 09091
| 14] 8 7 OBOSI—ﬁ 07063  0.8264 \
15 9 8 0916 F12°C13 | 06470 07513
16 10 9 09243 | =1/(1+$B$3)MB13-5) |

17 11 10 0.9312 U.5569 U.5209
209 ~ 203 202 0993 00614 00000 |
(210 204 203 0.9963 00612  0.0000
211 205 204 0.9963 00610  0.0000

Figure 8: Screenshot of the worksheet Calculating E(RLV).

6 The Distribution of RCoV

As a final exercise, we estimate the distribution of the residual value of the
group of 326 cohort members who are still customers of the firm in Year 5.

SWhy is this estimate of the residual lifetime value of a Year 5 customer so much higher
than the expected value of an as-yet-to-be-acquired customer? The fact that an individual
has survived into Year 5 means that they have a low underlying churn propensity; the
individuals with high underlying churn propensities have left the company by the time
we get to Year 5. This remaining pool of customers who have high retention rates will
(on average) stay around for a long time. We do not have a large proportion of the pool
of customers disappearing in the first few years of the calculation (as is the case when
computing E(CLV)), and this results in a higher (residual) lifetime value.
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(More formally, we are interested in the residual value of the cohort, which
we denote by RCoV. We wish to compute the distribution of RCoV.) The
logic is the same as that used to compute the distribution of the value of a
new cohort of 1000 customers (i.e., the distribution of CoV).

As a first step, we need to compute the distribution of RLV for such
customers (i.e., those who have made four renewals). With reference to the
worksheet Distribution of RLV (I) (Figure 9), we compute the distri-
bution in the following manner. Sticking with the 200-year time horizon
used above, an individual’s residual “lifetime” ranges from zero years to 200
years (column F). For each possible lifetime, we compute the residual lifetime
value of a customer with that lifetime (column G) and the probability that
a randomly chosen Year 5 customer has a residual lifetime of that length
(column H).

| A [ 8 ] ¢ | o E F G | H I

| 1 |[gamma 0.760
| 2 |delta 1.286
[3]d 0.1
| 4 |NetCF $100
| 5 |
| 6] t ft)  S(tIT>4) disc. RL RLV P(RL)

7 0
z 1 0.6285 =1-C12
[ 9| 2 0.7505

10 3 08122
[ 11] 4 08494 0 000  0.1257
[ 12] 5 08743 08743 10000 1 10000  0.0943

13 6 08921 07800  0.9091 - 190.91
[ 14] 7 09055 07063  0.8264 273.55
| 15 ] 8 09160 06470 07513 4 348.69
| 16] 9 09243 05980  0.6830 5 416.99

17 10 09312 05569  0.6209 6 479.08
(138 ~ 131 09942 00851 00000 | 270" T1099.95 0.0005
139 132 0.9943 00847  0.000 128 1099.99
|140] 133 0.9943 00842  0.0000 129 1099.99
|141] 134 0.9944 00837  0.0000 130 1100.00  0.0005
|142] 135  0.9944 00832  0.0000 131 1100.00  0.0005
143 136 0.9945 00828  0.0000 132 1100.00  0.0005
(144 137  0.9945 00823  0.000 133 1100.00  0.0004
209 ~ T 202~ 09963~ 00614 00000 | Tog[ ~ T1100.00  0.0002
1210] 203 09963 0.0612  0.0000 199 1100.00  0.0002
211 204 09963  0.0610  0.000 200 1100.00

Figure 9: Screenshot of the worksheet Distribution of RLV (I).

As was the case when computing the distribution of CLV, we note that
beyond a certain point in time, the customer’s residual lifetime value appears
to be the same ($1100), regardless of how long they remain a customer.

The final steps in computing the distribution of RLV are undertaken
in the worksheet Distribution of RLV (II). We first make a copy of
Distribution of RLV (I), round the RLV associated with each lifetime
to the nearest dollar (column I) and then create a pivot table that gives us
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the probability of seeing each value of RLV. The corresponding distribution
of RLV is plotted in Figure 10.7
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Figure 10: Estimated distribution of RLV

The mean of this distribution (cell 03) is $569.56, and the variance (cell
04) is $163,735.83. Note that this estimate of the mean is five cents higher
than our previous estimate. This difference can be attributed to the fact
that we have rounded the RLV numbers to the nearest dollar.

The distribution of RCoV can be computed in one of two ways:

e The easiest way of computing this is to use the normal approximation.
The expected value of the group of 326 customers who are still with
the firm in Year 5 is 326 x E(RLV) = $185,677 and the associated
variance 326 x var(RLV) = $53,377,881, which implies the standard
deviation is $7,306.

e Using the same approach as for the value of a new cohort, we sim-
ulate the distribution in the worksheets Distribution of RCoV (I)
and Distribution of RCoV (II). The average of these 1000 draws
is $185,295 and the sample variance is $54,291,447, which implies the
standard deviation is $7,368.

The associated distributions are plotted in Figure 11.

Given the distribution in RCoV (be it the simulated or normal approxi-
mation), we can make probabilistic statements about RCoV, which can be
a useful input to various financial calculations. For example,

"Compare this distribution to that shown in Figure 4: the differences in the distri-
bution of value for long-tenured customers (i.e., those active in Year 5) versus as-yet-to-
be-acquired ones is quite dramatic. In particular, the fraction of customers in the $1100
group rises from 4% for the latter group to 11.8% for the former. (See footnote 6 for a
discussion of what lies behind this difference.)
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Figure 11: Comparing the simulated versus normal approximation of the
distribution of the residual value of the cohort (RCoV).

e What is the probability that the RCoV will be less than $180,0007

— 228 of the 1,000 simulated values of RCoV are less than $180,000,
which gives us a probability of 0.228.

— Using the normal approximation, z = —0.752, which implies a
probability of 0.226.

e What is the probability that the RCoV will be between $175,000 and
$195,0007

— 823 of the 1,000 simulated values of RCoV fall in this interval,
which would gives us a probability of 0.823.

— Using the normal approximation, the z-score associated with $175,000
is —1.436 while the z-score associated with $195,000 is 1.301.
This implies the probability that the RCoV falls in this interval
is 0.828.

7 Discussion

In this note we have explored how to compute CLV, RLV, and the value
of a cohort of customers using a simple and robust model for the duration
of a customer’s relationship with the firm in contractual settings.® Most

8In contractual settings, the existence of a contract between the customer and the firm
means the firm will know when the customer has ended their relationship with the firm.
In contrast, customers in noncontractual settings do not explicitly signal to the firm that
they wish to terminate their relationship; as a result, the firm does not observe churn, only
an absence of behavior. The equivalent calculations are quite different in that setting.
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discussions of these concepts focus on the mean of the quantity of interest.
We have gone further, demonstrating how to compute the distribution of
these quantities.

While a lot more realistic than the typical problem considered in MBA-
level marketing courses, our introductory problem is still quite simple. We
now discuss a number of issues we have glossed over or ignored as we devel-
oped our solution.

i)

ii)

iii)

When computing CLV we have performed our calculations using a 200-
year time horizon as an approximation of infinity. Given the data in
Figure 1, our model predicts that there is a 2% chance that a customer
survives at least 200 years, which is clearly unrealistic. We have also
noted that the maximum possible lifetime value of a customer is $1100.
Looking at the worksheet Distribution of CLV (II), we see that a
customer would have to remain a customer for 70 years to get within
$1 of that limit. Again, this seems unrealistic. The natural reaction
is to suggest that we terminate the calculation at some earlier point
in time. The problem then becomes what cutoff point to choose? If
we compute (2) using a cutoff of 100 years, the maximum possible
lifetime value is within eight cents of the maximum and our estimate
E(CLV) is $362.20. (Recall that the original value was $362.21.) If
we choose a cutoff of 50 years, the maximum possible lifetime value
is reduced to $1091 and our estimate E(CLV) is $361.73. A cutoff
of 30 years sees our estimate E(CLV') dropping to $357.82. Our take
on this is that the overestimation of CLV associated with going out
to “infinity” is minimal, and that rather than wasting time discussing
an appropriate medium-term cutoff point, simply take the calculation
out to “infinity.”

If we are uncomfortable with such an approach, there is nothing wrong
with using a shorter-term period (e.g., five years). However, it is not
appropriate to call the resulting quantity “lifetime” value as it ignores
the value of customers who “live” beyond that time horizon.

We have assumed a constant net cash flow per customer of $100/year.
In practice, we would expect it to increase over time. If it grows at
annual rate of g x 100%, and assuming an annual discount rate of
d x 100%, we can rewrite (2) as

_ i (LE9)
E(CLV) = $100 x ;50&)(1 +d> ,

which is equivalent to using a annual discount rate of (d—g)/(1+g) X
100% in our calculations.
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iv)

vi)

We have also assumed that there is no variation in net cash flow across
customers. It many situations this will not be a valid assumption.
While using an average net cash flow per customer per period may be
fine if we are simply interested in E(CLV'), it not appropriate when we
are interested in the distribution of CLV. The gamma-gamma model of
spend (Fader and Hardie 2013) is a natural starting point if the distri-
bution of net cash flow per period can be characterized by a continuous
unimodal distribution. If the nature of the contracts/subscriptions is
such that there are a small number of “packages” each with a fixed
value, the distribution of spend could be characterized by a finite mix-
ture of multinomials or the Dirichlet-multinomial distribution. Given
a distribution for net cash flow per period, the easiest way compute
the distribution of CLV is by simulation. (The implementation of such
models requires a level of analytical skill beyond that assumed for the
analysis presented in this note.)

When we allow for variation in net cash flow across customers, the
issue of a correlation between net cash flow per period and customer
lifetime arises. In some cases, the menu of contracts can result in a
negative correlation (e.g., when discounts are offered to those taking
out a multi-year subscription). On the other hand, some analysts
argue that customers who stay around for a long time spend more
(although the evidence is mixed). The models for net cash flow per
period suggested above assume that it is independent of the length of
the customer’s relationship with the firm. Extending these models to
allow for dependence requires an even higher level of analytical skill
beyond that assumed for the analysis presented in this note.

We have talked about net cash flow, ignoring both spend on acquisition
and retention activities, as well the impact of the firm’s acquisition
activities on retention.

Our use of data on the behavior of previously acquired customers to
predict the behavior of as-yet-to-be-acquired customers (as in our CLV
calculations above) is based on the assumptions that i) the prospect
pool is the same, ii) there have been no major economic or techno-
logical shocks in the intervening time period, and iii) there have been
no major changes in the firm’s acquisition activities (relative to its
competition).

It is important to appreciate how a shift in the firm’s acquisition ac-
tivities can affect the lifetime value of the acquired customers. Money
spent on large discounts may attract the “wrong” type of customers,
those who are more likely to churn in search of the next “good deal.”
Alternatively, money spent on carefully targeted acquisition activities
will hopefully result in the acquisition of the “right” type of customers,
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those whose needs better match the firm’s offerings and are therefore
less likely to churn.

vii) Finally, we have considered the problem of computing lifetime value
in contractual settings. As noted in footnote 8, the difference between
contractual and noncontractual settings is that the loss of a customer
is observed directly in the former setting but not in the latter. The
fact that the firm does not observe churn means we cannot use the
approaches explored above to compute lifetime value. Researchers
have developed analytical tools for characterizing customer behavior
and computing customer lifetime value in noncontractual settings (e.g.,
Fader et al. 2005, Fader et al. 2010).
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