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1 Introduction

The beta-geometric (BG) distribution is a robust model for characteris-
ing discrete duration-time data. Important marketing applications include
modeling the duration of a customer’s contractual relationship with a firm

(Fader and Hardie 2007) and the calculation of customer lifetime value in
contractual settings (Fader and Hardie 2010, 2017).

A number of analysts have expressed a desire to incorporate the effects of
time-varying covariates in the BG model. Unfortunately, it is not practical

to do so. This note shows how such effects can be accommodated using a
lesser-known model for discrete duration-time data which, for all intents and

purposes, is identical to the BG.

2 Three Continuous Mixtures of Geometrics

The beta-geometric distribution is derived in the following manner:

• Let the random variable T denote the (discrete) time period in which

the event of interest occurs.

• At the level of the individual, we assume that T is distributed geomet-
ric with pmf

P (T = t | θ) = θ(1 − θ)t−1 , 0 < θ < 1, t = 1, 2, 3, . . . (1)
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and survivor function

S(t | θ) = (1 − θ)t , 0 < θ < 1, t = 0, 1, 2, . . . (2)

• From the analyst’s perspective, the unobserved (and unobservable)
θ is a realization of the random variable Θ. We assume that Θ is

characterized by the beta distribution:

g(θ | γ, δ) =
θγ−1(1 − θ)δ−1

B(γ, δ)
, γ, δ > 0. (3)

It follows that for a randomly chosen individual,

P (T = t | γ, δ) =

∫ 1

0
P (T = t | θ)g(θ | γ, δ) dθ

=
B(γ + 1, δ + t − 1)

B(γ, δ)
, t = 1, 2, 3, . . . (4)

and

S(t | γ, δ) =

∫ 1

0
S(t | θ)g(θ | γ, δ) dθ

=
B(γ, δ + t)

B(γ, δ)
, t = 0, 1, 2, . . . (5)

The choice of the beta distribution to characterize Θ is driven by math-
ematical convenience; it is a flexible distribution that results in closed-form

marginal distributions. A less-obvious alternative is to use the transforma-
tion θ = 1−exp(−λ) where differences in λ across individuals are character-

ized by a gamma distribution with parameters r and α. This is equivalent
to assuming that heterogeneity in θ is captured by a Grassia(II) distribution

(Grassia 1977).
The resulting mixture model has the following pmf and survivor function:

P (T = t | r, α) =

∫ ∞

0
(1 − e−λ)

(

e−λ
)t−1 αrλr−1e−αλ

Γ(r)
dλ

=

(

α

α + t − 1

)r

−

(

α

α + t

)r

, (6)

S(t | r, α) =

∫ ∞

0

(

e−λ
)t α

rλr−1e−αλ

Γ(r)
dλ

=

(

α

α + t

)r

. (7)

Fader et al. (2019) call this the Grassia(II)-geometric (G2G) distribution

and show that the fit and predictive performance of this model is equivalent
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to that of the BG. (Some readers may recognize that this distribution could
also be called a discretised Pareto distribution of the second kind.)

Another alternative distribution for characterising Θ is the logit-normal.
This is equivalent to using the transformation

θ =
eη

eη + 1

and assuming that differences in η across individuals are characterized by a
normal distribution with mean µ and variance σ2. For a randomly chosen

individual,

P (T = t | µ, σ2) =

∫ 1

0

(

eη

eη + 1

)(

1 −
eη

eη + 1

)t−1

g(η | µ, σ2) dη , (8)

and

S(t | µ, σ2) =

∫ 1

0

(

1 −
eη

eη + 1

)t

g(η | µ, σ2) dη (9)

We call this the logit-normal-geometric (LNG) distribution. Note that there
are no closed-form solutions to these integrals; they must be evaluated nu-

merically.

3 The Modeling Problem and a Simple Solution

The geometric distribution is the distribution of the number of iid Bernoulli
trials needed to get one “success”. If the probability of success is allowed to
vary across trials, we have

P (T = t) = θt

t−1
∏

j=1

(1− θj)

and

S(t) =















1 t = 0
t

∏

j=1

(1 − θj) t = 1, 2, 3, . . .

Let z(j) denote the vector of covariates at time j and β the effects of

these covariates. (It is very important to note that this vector of covariates
does not include an intercept.) Let Z(t) = {z(1), z(2), . . . , z(t)} represent

the covariate path up to time t.
As we reflect on how to incorporate these covariate effects in our model

of duration times, it is natural to think that the probability of the event
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happening at time j, given that it has not occurred so far, is a function of
the covariates at time j; i.e., θj = f(z(j)). We wish to incorporate the effects

of these covariates at the individual-level and then account for unobserved
cross-sectional heterogeneity. It is not practical to do so using the beta

distribution to characterize unobserved heterogeneity. (That is, we do not
end up with a simple closed-form solution.)

The most obvious way of making θj a function of z(j) is to use the logit
link function:

θj =
eη+z(j)β′

eη+z(j)β′
+ 1

.

This means that, at the level of the individual, we have

P (T = t | η, β; Z(t)) =

(

eη+z(t)β′

eη+z(t)β′
+ 1

) t−1
∏

j=1

(

1 −
eη+z(j)β′

eη+z(j)β′
+ 1

)

and

S(t | η,β; Z(t)) =

t
∏

j=1

(

1 −
eη+z(j)β′

eη+z(j)β′
+ 1

)

.

Assuming differences in η across individuals are characterized by a nor-
mal distribution with mean µ and variance σ2, it follows that for a randomly

chosen individual,

P (T = t | µ, σ2, β; Z(t)) =

∫ 1

0
P (T = t | η, β; Z(t)) g(η | µ, σ2) dη (10)

and

S(t | µ, σ2, β; Z(t)) =

∫ 1

0
S(t | η,β; Z(t)) g(η | µ, σ2) dη . (11)

When β = 0, (10) and (11) reduce to (8) and (9), respectively. As with the

LNG, there are no closed-form solutions to these integrals. Historically, this
was a barrier to the adoption of such models. However, this is less of an issue

these days as the integrals can easily be evaluated using simulation meth-
ods. Nevertheless, a closed-form solution is still desirable. (For example, a

“simple” closed-form solution is less computationally burdensome.)
A less familiar alternative to the logit link function is the complementary

log-log link function

θj = 1− e−eη+z(j)β ′

,

which we can rewrite as

θj = 1 − e−λez(j)β
′

.
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This means that, at the level of the individual, we have

P (T = t | λ, β; Z(t)) =

(

1 − e−λez(t)β
′
) t−1

∏

j=1

(

e−λez(j)β
′
)

= e−λC(t−1) − e−λC(t)

and

S(t | λ, β; Z(t)) =
t

∏

j=1

(

e−λez(j)β
′
)

= e−λC(t) ,

where

C(t) =

t
∑

j=1

ez(j)β′

.

Assuming differences in λ across individuals are characterized by a gamma
distribution with parameters r and α, it follows that for a randomly chosen

individual,

P (T = t | r, α, β; Z(t)) =

∫ ∞

0
P (T = t | λ, β; Z(t))g(λ | r, α)

=

(

α

α + C(t − 1)

)r

−

(

α

α + C(t)

)r

(12)

and

S(t | r, α,β; Z(t)) =

∫ ∞

0

S(t | λ, β; Z(t))g(λ | r, α)

=

(

α

α + C(t)

)r

. (13)

We call this the G2G+covariates model. When β = 0, C(t) = t, and (12)
and (13) reduce to (6) and (7), respectively.

As with the G2G, some readers will see that the G2G+covariates model
could be viewed as a discretised version of the continuous-time model in

which time-varying covariates are “added” to an exponential distribution
using the proportional hazards framework and unobserved heterogeneity is

characterized by the gamma distribution (e.g., Fader et al. 2003).
This G2G+covariates model has very simple closed-form expressions for

its pmf and survivor function, and is our recommended go-to model for any-
one modeling (single-event) discrete-time duration data with time-varying

covariates. More generally, it is a natural replacement for the BG whenever
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we want the (timing-related) phenomenon being characterized by the BG to
be a function of time-varying covariates. For example, Braun et al. (2015)

extend the BG/NBD model using this model in place of the BG to examine
the impact of time-varying covariates on (latent) attrition.
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